Seismic Fragility Assessment of Local and Global Failures in Low-rise Non-ductile Existing RC Buildings: Empirical Shear-Axial Modelling vs. ASCE/SEI 41 Approach

Document Type : Original Article


1 Unit of Strength of Materials and Structural Analysis, Department of basic sciences in engineering sciences, University of Innsbruck, Innsbruck, Austria

2 Faculty of Civil Engineering, University of Tehran, Tehran, Iran


The brittle behavior of older non-ductile reinforced concrete buildings such as shear-axial failure in columns can cause lateral instability or gravity collapse. Hence, the attempt is to assess the collapse potential through fragility curves. Current research focuses on fragility assessment of these buildings emphasizing on shear-axial failure using two well-established methods; empirical limit state material versus ASCE/SEI 41-13 recommendations. To this aim, two 2D reinforced concrete models (3 and 5-story) according to typical detail of existing buildings in Iran were modeled using two aforementioned modeling approaches and analyzed under monotonic analysis and incremental dynamic analysis (IDA). In the following, seismic fragility assessment were carried out by means of obtained results from IDA. The results of fragility curves showed that, collapse capacity of buildings modelled by ASCE/SEI 41-13 are more than empirical method and fewer cases can pass the level of safety probability of failure suggested by ASCE/SEI-41.


Google Scholar


Main Subjects

[1]     Allahvirdizadeh R, Mohammadi MA. Upgrading equivalent static method of seismic designs to performance-based procedure. Earthquakes Struct 2016;10:849–65. doi:10.12989/eas.2016.10.4.849.
[2]     Allahvirdizadeh R, Khanmohammadi M, Marefat MS. Probabilistic comparative investigation on introduced performance-based seismic design and assessment criteria. Eng Struct 2017;151:206–20. doi:10.1016/j.engstruct.2017.08.029.
[3]     Shafaei S, Ayazi A, Farahbod F. The effect of concrete panel thickness upon composite steel plate shear walls. J Constr Steel Res 2016;117:81–90. doi:10.1016/j.jcsr.2015.10.006.
[4]     Rassouli B, Shafaei S, Ayazi A, Farahbod F. Experimental and numerical study on steel-concrete composite shear wall using light-weight concrete. J Constr Steel Res 2016;126:117–28. doi:10.1016/j.jcsr.2016.07.016.
[5]     Ayazi A, Ahmadi H, Shafaei S. The effects of bolt spacing on composite shear wall behavior. World Acad Sci Eng Technol 2012;6:10–27.
[6]     Shafaei S, Farahbod F, Ayazi A. Concrete Stiffened Steel Plate Shear Walls With an Unstiffened Opening. Structures 2017;12:40–53. doi:10.1016/j.istruc.2017.07.004.
[7]     Shafaei S, Farahbod F, Ayazi A. The wall-frame and the steel-concrete interactions in composite shear walls. Struct Des Tall Spec Build 2018:e1476. doi:10.1002/tal.1476.
[8]     Elwood KJ. Shake table tests and analytical studies on the gravity load collapse of reinforced concrete frames. 2004.
[9]     Elwood KJ, Moehle JP. Evaluation of existing reinforced concrete columns. Proceedings, 2004.
[10]    Elwood KJ. Modelling failures in existing reinforced concrete columns. Can J Civ Eng 2004;31:846–59. doi:10.1139/l04-040.
[11]    Elwood KJ, Moehle JP. Dynamic Shear and Axial-Load Failure of Reinforced Concrete Columns. J Struct Eng 2008;134:1189–98. doi:10.1061/(ASCE)0733-9445(2008)134:7(1189).
[12]    Kabeyasawa T, Kabeyasawa T, Kim Y. Progressive Collapse Simulation of Reinforced Concrete Buildings Using Column Models with Strength Deterioration after Yielding. Improv. Seism. Perform. Exist. Build. Other Struct., Reston, VA: American Society of Civil Engineers; 2009, p. 512–23. doi:10.1061/41084(364)47.
[13]    Yavari S, Lin SH, Elwood KJ, Wu CL, Hwang SJ, Moehle JP. Study on collapse of flexure-shear-critical reinforced concrete frames. 14th World Conf. Earthq. Eng. Beijing, China, 2008.
[14]    Yavari S, Elwood KJ, Wu C. Collapse of a nonductile concrete frame: Evaluation of analytical models. Earthq Eng Struct Dyn 2009;38:225–41. doi:10.1002/eqe.855.
[15]    Mosalam KM, Talaat M, Park S. Modeling progressive collapse in reinforced concrete framed structures. Proc. 14th World Conf. Earthq. Eng., 2008, p. 12–7.
[16]    Wu C, Kuo W-W, Yang Y-S, Hwang S-J, Elwood KJ, Loh C-H, et al. Collapse of a nonductile concrete frame: Shaking table tests. Earthq Eng Struct Dyn 2009;38:205–24. doi:10.1002/eqe.853.
[17]    Matamoros AB, Matchulat L, Woods C. Axial load failure of shear critical columns subjected to high levels of axial load. Proc. 14th World Conf. Earthq. Eng, Citeseer; 2008.
[18]    Nakamura T, Yoshimura M. Gravity Load Collapse of Reinforced Concrete Columns with Brittle Failure Modes. J Asian Archit Build Eng 2002;1:21–7. doi:10.3130/jaabe.1.21.
[19]    Nakamura T, Yoshimura M. Simulation of Old Reinforced Concrete Column Collapse by Pseudo-dynamic Test Method. World Conf. Earthq. Eng., vol. 12, 2012, p. 1–10.
[20]    Mostafaei H, Vecchio FJ, Kabeyasawa T. Nonlinear displacement-based response prediction of reinforced concrete columns. Eng Struct 2008;30:2436–47. doi:10.1016/j.engstruct.2008.01.020.
[21]    Mostafaei H, Vecchio FJ. Uniaxial shear-flexure model for reinforced concrete elements. J Struct Eng 2008;134:1538–47.
[22]    Mostafaei H, Vecchio FJ, Kabeyasawa T. Deformation capacity of reinforced concrete columns. ACI Struct J 2009;106:187.
[23]    Murray JA, Sasani M. Evaluating System-Level Collapse Resistance of Non-Ductile RC Frames Structures. Proc. 10th Natl. Conf. Earthq. Eng. Earthq. Eng. Res. Institute, Anchorage, AK, 2014.
[24]    Henkhaus KW. Axial failure of vulnerable reinforced concrete columns damaged by shear reversals 2010.
[25]    Sasani M. Shear Strength and Deformation Capacity Models for RC Columns. 13th World Conf. Earthq. Eng. Vancouver Canada, Pap., 2004.
[26]    Kyriakides N, Sohaib A, Pilakoutas K, Neocleous K, Chrysostomou C, Tantele E, et al. Evaluation of Seismic Demand for Substandard Reinforced Concrete Structures. Open Constr Build Technol J 2018;12:9–33. doi:10.2174/1874836801812010009.
[27]    Allahvirdizadeh R, Gholipour Y. Reliability evaluation of predicted structural performances using nonlinear static analysis. Bull Earthq Eng 2017;15:2129–48. doi:10.1007/s10518-016-0062-x.
[28]    Kakavand MRA. Limit State Material Manual 2007.
[29]    McKenna F, Fenves GL, Scott MH. Open system for earthquake engineering simulation. Univ California, Berkeley, CA 2000.
[30]    Elwood KJ, Matamoros AB, Wallace JW, Lehman DE, Heintz JA, Mitchell AD, et al. Update to ASCE/SEI 41 Concrete Provisions. Earthq Spectra 2007;23:493–523. doi:10.1193/1.2757714.
[31]    ASCE 41-13. Publ Anticip Seism Eval Upgrad Exist Build 2013;Reston, Vi.
[32]    Kyriakides NC, Pantazopoulou SJ. Collapse Fragility Curves for RC Buildings Exhibiting Brittle Failure Modes. J Struct Eng 2018;144:04017207. doi:10.1061/(ASCE)ST.1943-541X.0001920.
[33]    Kyriakides N, Ahmad S, Pilakoutas K, Neocleous K, Chrysostomou C. A probabilistic analytical seismic vulnerability assessment framework for substandard structures in developing countries. Earthq Struct 2014;6:665–87.
[34]    Ahmad S, Kyriakides N, Pilakoutas K, Neocleous K, Zaman Q uz. Seismic fragility assessment of existing sub-standard low strength reinforced concrete structures. Earthq Eng Eng Vib 2015;14:439–52. doi:10.1007/s11803-015-0035-0.
[35]    Galanis PH, Moehle JP. Development of collapse indicators for older-type reinforced concrete buildings. Proc. 15th World Conf. Earthq. Eng., 2012.
[36]    Baradaran Shoraka M, Yang TY, Elwood KJ. Seismic loss estimation of non-ductile reinforced concrete buildings. Earthq Eng Struct Dyn 2013;42:297–310. doi:10.1002/eqe.2213.
[37]    Farahmand H, Reza Azadi Kakavand M, Tavousi Tafreshi S, Hafiz P. The Effect of Mechanical and Geometric Parameters on the Shear and Axial Failures of Columns in Reinforced Concrete Frames. Ciência e Nat 2015;37.
[38]    Yavari S, Elwood KJ, Wu CL, Lin SH, Hwang SJ, Moehle JP. Shaking table tests on reinforced concrete frames without seismic detailing. ACI Struct J 2013;110:1001.
[39]    (FEMA) FEMA. Quantification of Building Seismic Performance Factors 2009.