Determining the Drift in Reinforced Concrete Building Using ANFIS Soft Computing Modeling

Document Type : Original Article


Department of Civil Engineering, Islamshahr Branch, Islamic Azad University Islamshahr, Iran


Earthquakes are considered as one of the most significant natural disasters that can potentially cause significant damages to structures. Displacement of buildings’ floors is one of the serious failures in structures caused by earthquakes. In this paper, the drift of a concrete frame with the shear wall is estimated using ANFIS modeling. A dataset of 300 measured data points was used herein as the inputs for the ANFIS model. The dataset has totally six input parameters including frequency, magnitude, peak ground acceleration (PGA), and shear wave velocity (Vs) of an earthquake and the distance from the earthquake epicenter to use in the ANFIS model, while the model has just one output. Moreover, a sensitivity analysis was performed on the dataset in order to determine the efficiency of the individual input variables on the accuracy of the results. The results demonstrate that the ANFIS model is an effective model for predicting the drift in reinforced concrete structures. Finally, according to sensitivity analysis, the acceleration and shear wave velocity of an earthquake have the highest and lowers impacts on the accuracy of the results, respectively.


Google Scholar


Main Subjects

[1]       Mosleh A, Varum H, Jara J. A methodology for determining the seismic vulnerability of old concrete highway ridges by using fragility curves. J Struct Eng Geotech 2015;5:1–7.
[2]       Mosleh A, Rodrigues H, Varum H, Costa A, Arêde A. Seismic behavior of RC building structures designed according to current codes. Structures 2016;7:1–13. doi:10.1016/j.istruc.2016.04.001.
[3]       Mosleh A, Razzaghi MS, Jara J, Varum H. Development of fragility curves for RC bridges subjected to reverse and strike-slip seismic sources. Earthquakes Struct 2016;11:517–38. doi:10.12989/eas.2016.11.3.517.
[4]       Kaveh A, Bakhshpoori T, Azimi M. Seismic optimal design of 3D steel frames using cuckoo search algorithm. Struct Des Tall Spec Build 2015;24:210–27. doi:10.1002/tal.1162.
[5]       Lin Z, Yan F, Azimi M, Azarmi F. A Revisit of Fatigue Performance Based Welding Quality Criteria in Bridge Welding Provisions and Guidelines. Int Ind informatics Comput Eng Conf, Shaanxi: 2015, p. 2042–6.
[6]       Lin Z Bin, Azarmi F, Al-Kaseasbeh Q, Azimi M, Yan F. Advanced Ultrasonic Testing Technologies with Applications to Evaluation of Steel Bridge Welding - An Overview. Appl Mech Mater 2015;727–728:785–9. doi:10.4028/
[7]       Amiri GG, Azimi M, Darvishan E. Retrofitting I-beam to double-I built-up column connections using through plates and T-stiffeners. Sci Iran 2013;20:1695–707.
[8]       Tsai C-H, Hsu D-S. Diagnosis of Reinforced Concrete Structural Damage Base on Displacement Time History using the Back-Propagation Neural Network Technique. J Comput Civ Eng 2002;16:49–58. doi:10.1061/(ASCE)0887-3801(2002)16:1(49).
[9]       Vosoughi AR, Gerist S. New hybrid FE-PSO-CGAs sensitivity base technique for damage detection of laminated composite beams. Compos Struct 2014;118:68–73. doi:10.1016/j.compstruct.2014.07.012.
[10]     Gerist S, Naseralavi SS, Salajegheh E. BASIS PURSUIT BASED GENETIC ALGORITHM FOR DAMAGE IDENTIFICATION TT  -. IUST 2012;2:301–19.
[11]     Gerist S, Maheri MR. Multi-stage approach for structural damage detection problem using basis pursuit and particle swarm optimization. J Sound Vib 2016;384:210–26. doi:10.1016/j.jsv.2016.08.024.
[12]     Naderpour H, Alavi SA. A proposed model to estimate shear contribution of FRP in strengthened RC beams in terms of Adaptive Neuro-Fuzzy Inference System. Compos Struct 2017;170:215–27. doi:10.1016/j.compstruct.2017.03.028.
[13]     Khademi F, Jamal SM, Deshpande N, Londhe S. Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. Int J Sustain Built Environ 2016;5:355–69. doi:10.1016/j.ijsbe.2016.09.003.
[14]     Topçu İB, Sarıdemir M. Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput Mater Sci 2008;41:305–11. doi:10.1016/j.commatsci.2007.04.009.
[15]     Sadowski L, Nikoo M. Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm. Neural Comput Appl 2014;25:1627–38. doi:10.1007/s00521-014-1645-6.
[16]     Yadollahi A, Nazemi E, Zolfaghari A, Ajorloo AM. Application of artificial neural network for predicting the optimal mixture of radiation shielding concrete. Prog Nucl Energy 2016;89:69–77. doi:10.1016/j.pnucene.2016.02.010.
[17]     Khademi F, Jamal SM. Estimating the compressive strength of concrete using multiple linear regression and adaptive neuro-fuzzy inference system. Int J Struct Eng 2017;8:20. doi:10.1504/IJSTRUCTE.2017.081669.
[18]     Jang H-S, Shuli X, Lee M, Lee Y-K, So S-Y. Use of Artificial Neural Network for the Simulation of Radon Emission Concentration of Granulated Blast Furnace Slag Mortar. J Nanosci Nanotechnol 2016;16:5268–73. doi:10.1166/jnn.2016.12268.
[19]     Khademi F, Akbari M, Jamal SM. Prediction of concrete compressive strength using ultrasonic pulse velocity test and artificial neural network modeling. Rom J Mater 2016;46:343–50.
[20]     Keshavarz Z. Predicting the Civil Engineering Characteristics through Soft Computing Models. Civ Eng Res J 2017;1. doi:10.19080/CERJ.2017.01.555563.
[21]     Keshavarz Z, Torkian H. Application of ANN and ANFIS Models in Determining Compressive Strength of Concrete. J Soft Comput Civ Eng 2018;2:62–70. doi:10.22115/SCCE.2018.51114.
[22]     Nikoo M, Zarfam P. Determining Confidence for Evaluation of Vulnerability In Reinforced Concrete Frames with Shear Wall. J Basic Appl  Sci Res 2012;2:6605–14.
[23]     Nikoo M, Zarfam P. Determining Displacement in Concrete Reinforcement Building with using Evolutionary Artificial Neural Networks. World Appl Sci J 2012;16:1699–708.
[24]     Khademi F, Akbari M, Nikoo M. Displacement determination of concrete reinforcement building using data-driven models. Int J Sustain Built Environ 2017;6:400–11. doi:10.1016/j.ijsbe.2017.07.002.
[25]     Lee S, Lee C. Prediction of shear strength of FRP-reinforced concrete flexural members without stirrups using artificial neural networks. Eng Struct 2014;61:99–112. doi:10.1016/j.engstruct.2014.01.001.
[26]     Khademi F, Jamal SM. Predicting the 28 days compressive strength of concrete using artificial neural network. I-Manager’s J Civ Eng 2016;6:1.
[27]     Mansouri I, Kisi O. Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches. Compos Part B Eng 2015;70:247–55. doi:10.1016/j.compositesb.2014.11.023.
[28]     Madandoust R, Bungey JH, Ghavidel R. Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models. Comput Mater Sci 2012;51:261–72. doi:10.1016/j.commatsci.2011.07.053.
[29]     KhalilzadeVahidi E, Rahimi F. Investigation of Ultimate Shear Capacity of RC Deep Beams with Opening using Artificial Neural Networks. Adv Comput Sci an Int J 2016;5:57–65.
[30]     Khademi F, Akbari M, Jamal SM, Nikoo M. Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Front Struct Civ Eng 2017;11:90–9. doi:10.1007/s11709-016-0363-9.
[31]     Naderpour H, Kheyroddin A, Amiri GG. Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Compos Struct 2010;92:2817–29. doi:10.1016/j.compstruct.2010.04.008.
[32]     Sobhani J, Najimi M, Pourkhorshidi AR, Parhizkar T. Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models. Constr Build Mater 2010;24:709–18. doi:10.1016/j.conbuildmat.2009.10.037.
[33]     Nazari A, Khalaj G. Prediction compressive strength of lightweight geopolymers by ANFIS. Ceram Int 2012;38:4501–10. doi:10.1016/j.ceramint.2012.02.026.
[34]     Boğa AR, Öztürk M, Topçu İB. Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI. Compos Part B Eng 2013;45:688–96. doi:10.1016/j.compositesb.2012.05.054.
[35]     Zhou Q, Wang F, Zhu F. Estimation of compressive strength of hollow concrete masonry prisms using artificial neural networks and adaptive neuro-fuzzy inference systems. Constr Build Mater 2016;125:417–26. doi:10.1016/j.conbuildmat.2016.08.064.
[36]     Behfarnia K, Khademi F. A comprehensive study on the concrete compressive strength estimation using artificial neural network and adaptive neuro-fuzzy inference system. Int J Optim Civ Eng 2017;7:71–80.
[37]     Sadeghi-Nik A, Berenjian J, Bahari A, Safaei AS, Dehestani M. Modification of microstructure and mechanical properties of cement by nanoparticles through a sustainable development approach. Constr Build Mater 2017;155:880–91. doi:10.1016/j.conbuildmat.2017.08.107.
[38]     Kafi MA, Sadeghi-Nik A, Bahari A, Sadeghi-Nik A, Mirshafiei E. Microstructural Characterization and Mechanical Properties of Cementitious Mortar Containing Montmorillonite Nanoparticles. J Mater Civ Eng 2016;28:4016155. doi:10.1061/(ASCE)MT.1943-5533.0001671.
[39]     Bahari A, Sadeghi-Nik A, Roodbari M, Taghavi K, Mirshafiei E. Synthesis and strength study of cement mortars containing SiC nano particles. vol. 7. 2012.
[40]     Bahari A, Berenjian J, Sadeghi-Nik A. Modification of Portland Cement with Nano SiC. Proc Natl Acad Sci India Sect A Phys Sci 2016;86:323–31. doi:10.1007/s40010-015-0244-y.
[41]     Bahari A, Sadeghi Nik A, Roodbari M, Mirshafiei E, Amiri B. Effect of Silicon Carbide Nano Dispersion on the Mechanical and Nano Structural Properties of Cement. Natl Acad Sci Lett 2015;38:361–4. doi:10.1007/s40009-014-0316-6.
[42]     MOSAVI SM, SADEGHI NIK A. Strengthening of steel–concrete composite girders using carbon fibre reinforced polymer (CFRP) plates. Sadhana 2015;40:249–61. doi:10.1007/s12046-014-0294-x.