Development of Dam-Break Model Considering Real Case Studies with Asymmetric Reservoirs

Document Type : Original Article


1 Lecturer, University of Applied Science and Technology, Tehran, 15996-65111, Iran

2 M.Sc. Graduate, Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan, Iran

3 Associate Professor, Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan, Iran


Dam-break flow is known as one of the most horrible phenomena. Some hypothetical reservoir geometries were evaluated in literature, but in nature, each reservoir has a unique geometry. In the present research, dam-break flow was studied based on different reservoir geometries using FLOW-3D. Six reservoirs were considered: reservoirs R1 and R2 belonged to Mahabad Dam (Iran) and Tignes Dam (France), with asymmetric reservoirs, respectively; reservoirs R3 and R4 had symmetrical trapezoidal reservoirs with angles 30 and 45 degrees, respectively; reservoir R5 had a rectangular shape, extending from one side; and reservoir R6 had a long reservoir, which also was used to verify FLOW-3D. The model performance was verified by experimental results and FLUENT model in literature. Results showed FLOW-3D with mesh sizes 30×30×30 mm and k-ɛ turbulence model outperformed FLUENT, based on R2, RMSE, and MAE. The results of water levels and flow velocities at five points proved that dam-break flow could vary from one dam to another, considering reservoir geometry. Peak water levels and velocities have been measured to show how reservoir geometry could cause catastrophic flow.


Main Subjects

[1]      Kojima H, Kohgo Y, Shimada K, Shoda D, Suzuki H, Saito H. Numerical modeling of flood flow after small earthen dam failure: a case study from the 2011 Tohoku earthquake. Paddy Water Environ 2020;18:431–42. doi:10.1007/s10333-020-00792-w.
[2]      Chen S-H. Hydraulic Structures. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. doi:10.1007/978-3-662-47331-3.
[3]      Larocque LA, Imran J, Chaudhry MH. 3D numerical simulation of partial breach dam-break flow using the LES and k –ϵ turbulence models. J Hydraul Res 2013;51:145–57. doi:10.1080/00221686.2012.734862.
[4]      Sangsefidi Y, Mehraein M, Ghodsian M. Experimental study on flow over in-reservoir arced labyrinth weirs. Flow Meas Instrum 2018;59:215–24. doi:10.1016/j.flowmeasinst.2017.12.002.
[5]      Safarrazavi Zadeh M, Esmaeili Varaki M, Biabani R. Experimental study on flow over sinusoidal and semicircular labyrinth weirs. ISH J Hydraul Eng 2019:1–10. doi:10.1080/09715010.2019.1644679.
[6]      Nayyer S, Farzin S, Karami H, Rostami M. A numerical and experimental investigation of the effects of combination of spur dikes in series on a flow field. J Brazilian Soc Mech Sci Eng 2019;41:256. doi:10.1007/s40430-019-1757-0.
[7]      Ferdowsi A, Farzin S, Mousavi S-F, Karami H. Hybrid Bat & Particle Swarm Algorithm for optimization of labyrinth spillway based on half & quarter round crest shapes. Flow Meas Instrum 2019;66:209–17. doi:10.1016/j.flowmeasinst.2019.03.003.
[8]      Ferdowsi A, Hoseini SM, Farzin S, Faramarzpour M, Mousavi S-F. Shape optimization of gravity dams using a nature-inspired approach. J Soft Comput Civ Eng 2020;4:65–78.
[9]      Ferdowsi A, Valikhan-Anaraki M, Mousavi S-F, Farzin S, Mirjalili S. Developing a model for multi-objective optimization of open channels and labyrinth weirs: Theory and application in Isfahan Irrigation Networks. Flow Meas Instrum 2021;80:101971. doi:10.1016/j.flowmeasinst.2021.101971.
[10]    Ferdowsi A, Singh VP, Ehteram M, Mirjalili S. Multi-objective Optimization Approaches for Design, Planning, and Management of Water Resource Systems, 2021, p. 275–303. doi:10.1007/978-981-33-4295-8_11.
[11]     Ferdowsi A, Mousavi S-F, Farzin S, Karami H. Optimization of dam’s spillway design under climate change conditions. J Hydroinformatics 2020;22:916–36. doi:10.2166/hydro.2020.019.
[12]    Bell SW, Elliot RC, Hanif Chaudhry M. Experimental results of two-dimensional dam-break flows. J Hydraul Res 1992;30:225–52. doi:10.1080/00221689209498936.
[13]    STANSBY PK, CHEGINI A, BARNES TCD. The initial stages of dam-break flow. J Fluid Mech 1998;374:407–24. doi:10.1017/S0022112098001918.
[14]    Xue Y, Xu W, Luo S, Chen H, Li N, Xu L. Experimental Study of Dam-Break Flow in Cascade Reservoirs With Steep Bottom Slope. J Hydrodyn 2011;23:491–7. doi:10.1016/S1001-6058(10)60140-0.
[15]    Feizi Khankandi A, Tahershamsi A, Soares-Frazão S. Experimental investigation of reservoir geometry effect on dam-break flow. J Hydraul Res 2012;50:376–87. doi:10.1080/00221686.2012.690974.
[16]    Farzin S, Alizadeh M, Hassanzadeh Y. Numerical Simulation of Unsteady One-Dimensional Dam-Break Flows Using TVD MacCormack Scheme n.d.
[17]    Farzin S, Hassanzadeh Y, Aalami MT, Fatehi R. Analysis of Dam Break Problem Using a Lagrangian Method and Comparing it with Eulerian Approach. Iran-Water Resour Res 2014;10:87–105.
[18]    Farzin S, Hassanzadeh Y, Alami MT, Fatehi R. An implicit incompressible SPH method for free surface flow problems. Modares Mech Eng 2014;14:99–110.
[19]    Wood A, Wang K-H. Modeling dam-break flows in channels with 90 degree bend using an alternating-direction implicit based curvilinear hydrodynamic solver. Comput Fluids 2015;114:254–64. doi:10.1016/j.compfluid.2015.03.011.
[20]    Hooshyaripor F, Tahershamsi A, Razi S. Dam break flood wave under different reservoir’s capacities and lengths. Sādhanā 2017;42:1557–69. doi:10.1007/s12046-017-0693-x.
[21]    Kocaman S, Ozmen-Cagatay H. The effect of lateral channel contraction on dam break flows: Laboratory experiment. J Hydrol 2012;432–433:145–53. doi:10.1016/j.jhydrol.2012.02.035.
[22]    Marsooli R, Wu W. 3-D finite-volume model of dam-break flow over uneven beds based on VOF method. Adv Water Resour 2014;70:104–17. doi:10.1016/j.advwatres.2014.04.020.
[23]    Issakhov A, Zhandaulet Y, Nogaeva A. Numerical simulation of dam break flow for various forms of the obstacle by VOF method. Int J Multiph Flow 2018;109:191–206. doi:10.1016/j.ijmultiphaseflow.2018.08.003.
[24]    Kurokawa FA, Corrêa L, Queiroz RAB de. Numerical simulation of 3D unsteady turbulent free surface flows using $$kappa -varepsilon$$ κ - ε model and ADBQUICKEST scheme. J Brazilian Soc Mech Sci Eng 2018;40:202. doi:10.1007/s40430-018-1100-1.
[25]    Issakhov A, Imanberdiyeva M. Numerical simulation of the movement of water surface of dam break flow by VOF methods for various obstacles. Int J Heat Mass Transf 2019;136:1030–51. doi:10.1016/j.ijheatmasstransfer.2019.03.034.
[26]    Moyce WJ, Martin JC. An experimental study of the collapse of liquid columns on a rigid horizonal plane. Philos Trans Roy Soc London A 1952;244:312–24.
[27]    Abdolmaleki K, Thiagarajan KP, Morris-Thomas MT. Simulation of the dam break problem and impact flows using a Navier-Stokes solver. Simulation 2004;13:17.
[28]    Daneshfaraz R, Minaei O, Abraham J, Dadashi S, Ghaderi A. 3-D Numerical simulation of water flow over a broad-crested weir with openings. ISH J Hydraul Eng 2019:1–9. doi:10.1080/09715010.2019.1581098.
[29]    Li G, Li P, Li X, Deng Y. Numerical optimization of oblique cut bucket and its application in Ski jump of Shiziya dam. ISH J Hydraul Eng 2019:1–10. doi:10.1080/09715010.2019.1685915.
[30]    Flow Science Inc. FLOW-3D User’s Manual. 9.3 ed. Flow Science Inc, Los Alamos 2008. n.d.
[31]    Ozmen-Cagatay H, Kocaman S, Guzel H. Investigation of dam-break flood waves in a dry channel with a hump. J Hydro-Environment Res 2014;8:304–15. doi:10.1016/j.jher.2014.01.005.
[32]    Kocaman S, Ozmen-Cagatay H. Investigation of dam-break induced shock waves impact on a vertical wall. J Hydrol 2015;525:1–12. doi:10.1016/j.jhydrol.2015.03.040.
[33]    Zhou Z, Wang X, Chen W, Deng S, Liu M. Numerical Simulation of Dam-Break Flooding of Cascade Reservoirs. Trans Tianjin Univ 2017;23:570–81. doi:10.1007/s12209-017-0073-y.
[34]    Hu H, Zhang J, Li T. Dam-Break Flows: Comparison between Flow-3D, MIKE 3 FM, and Analytical Solutions with Experimental Data. Appl Sci 2018;8:2456. doi:10.3390/app8122456.
[35]    Tahershamsi A, Hooshyaripor F, Razi S. Reservoir’s Geometry Impact of Three Dimensions on Peak-Discharge of Dam Failure Flash Flood. Sci Iran 2017:0–0. doi:10.24200/sci.2017.4467.
[36]    Harlow FH. Turbulence Transport Equations. Phys Fluids 1967;10:2323. doi:10.1063/1.1762039.