Numerical Analysis of Flow and Heat Transfer Characteristics between Two Parallel Plates with Constriction(s)

Document Type : Original Article


Department of Mechanical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh


A numerical study involving graphical analysis has been carried out to investigate fluid flow and heat transfer between two stationary horizontal plates possessing blocks (which restricts flow). Important parameters corresponding to pressure, velocity, temperature, heat transfer coefficient and Nusselt Number have been under the spotlight. Multiple investigations have been undertaken to observe the flow and heat transfer characteristics not only by altering the size of blocks but also by changing the number of blocks. As the blocks reduce the area of flow, following the Continuity equation, reduction of flow area increases the flow velocity and makes the flow turbulent. And the rise of fluid velocity lowers the pressure according to Bernoulli’s principle. Moreover, the presence of blocks creates recirculation of fluid which increases the available time for heat gaining while heat flux is being applied. Blocks contribute to the increase in temperature of the fluid. The higher velocity of fluid causes higher collision among fluid particles. Thus, the heat transfer coefficient and Nusselt Number increase.


Google Scholar


Main Subjects

[1]     Tshehla MS, Myers TG, Charpin JPF. The flow of power law fluids between parallel plates with shear heating. WIT Trans Eng Sci 2006;52.
[2]     Orszag SA, Kells LC. Transition to turbulence in plane Poiseuille and plane Couette flow. J Fluid Mech 1980;96:159. doi:10.1017/S0022112080002066.
[3]     Sundén B, Sköldheden T. Heat transfer and pressure drop in a new type of corrugated channels. Int Commun Heat Mass Transf 1985;12:559–66. doi:10.1016/0735-1933(85)90079-X.
[4]     Sunden B, Trollheden S. Periodic laminar flow and heat transfer in a corrugated two-dimensional channel. Int Commun Heat Mass Transf 1989;16:215–25. doi:10.1016/0735-1933(89)90023-7.
[5]     Sawyers DR, Sen M, Chang H-C. Heat transfer enhancement in three-dimensional corrugated channel flow. Int J Heat Mass Transf 1998;41:3559–73. doi:10.1016/S0017-9310(98)00029-5.
[6]     Béreiziat D, Devienne R. Experimental characterization of Newtonian and non-Newtonian fluid flows in corrugated channels. Int J Eng Sci 1999;37:1461–79. doi:10.1016/S0020-7225(98)00126-8.
[7]     Fabbri G. Heat transfer optimization in corrugated wall channels. Int J Heat Mass Transf 2000;43:4299–310. doi:10.1016/S0017-9310(00)00054-5.
[8]     Fabbri G, Rossi R. Analysis of the heat transfer in the entrance region of optimised corrugated wall channel. Int Commun Heat Mass Transf 2005;32:902–12. doi:10.1016/j.icheatmasstransfer.2004.08.027.
[9]     Mehrabian M., Poulter R. Hydrodynamics and thermal characteristics of corrugated channels: computational approach. Appl Math Model 2000;24:343–64. doi:10.1016/S0307-904X(99)00039-6.
[10]    Gradeck M, Hoareau B, Lebouché M. Local analysis of heat transfer inside corrugated channel. Int J Heat Mass Transf 2005;48:1909–15. doi:10.1016/j.ijheatmasstransfer.2004.12.026.
[11]    Zimmerer C, Gschwind P, Gaiser G, Kottke V. Comparison of heat and mass transfer in different heat exchanger geometries with corrugated walls. Exp Therm Fluid Sci 2002;26:269–73. doi:10.1016/S0894-1777(02)00136-X.
[12]    Wang C-C, Chen C-K. Forced convection in a wavy-wall channel. Int J Heat Mass Transf 2002;45:2587–95. doi:10.1016/S0017-9310(01)00335-0.
[13]    Ali AHH, Hanaoka Y. Experimental study on laminar flow forced-convection in a channel with upper V-corrugated plate heated by radiation. Int J Heat Mass Transf 2002;45:2107–17. doi:10.1016/S0017-9310(01)00309-X.
[14]    Metwally HM, Manglik RM. Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels. Int J Heat Mass Transf 2004;47:2283–92. doi:10.1016/j.ijheatmasstransfer.2003.11.019.
[15]    Islamoglu Y, Parmaksizoglu C. The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel. Appl Therm Eng 2003;23:979–87. doi:10.1016/S1359-4311(03)00029-2.
[16]    Islamoglu Y, Kurt A. Heat transfer analysis using ANNs with experimental data for air flowing in corrugated channels. Int J Heat Mass Transf 2004;47:1361–5. doi:10.1016/j.ijheatmasstransfer.2003.07.031.
[17]    Islamoglu Y, Parmaksizoglu C. Numerical investigation of convective heat transfer and pressure drop in a corrugated heat exchanger channel. Appl Therm Eng 2004;24:141–7. doi:10.1016/j.applthermaleng.2003.07.004.
[18]    Naphon P. Laminar convective heat transfer and pressure drop in the corrugated channels. Int Commun Heat Mass Transf 2007;34:62–71. doi:10.1016/j.icheatmasstransfer.2006.09.003.
[19]    Naphon P. Heat transfer characteristics and pressure drop in channel with V corrugated upper and lower plates. Energy Convers Manag 2007;48:1516–24. doi:10.1016/j.enconman.2006.11.020.
[20]    Naphon P. Effect of corrugated plates in an in-phase arrangement on the heat transfer and flow developments. Int J Heat Mass Transf 2008;51:3963–71. doi:10.1016/j.ijheatmasstransfer.2007.11.050.
[21]    Tiwari AK, Ghosh P, Sarkar J, Dahiya H, Parekh J. Numerical investigation of heat transfer and fluid flow in plate heat exchanger using nanofluids. Int J Therm Sci 2014;85:93–103. doi:10.1016/j.ijthermalsci.2014.06.015.
[22]    Shetab Bushehri MR, Ramin H, Salimpour MR. A new coupling method for slip-flow and conjugate heat transfer in a parallel plate micro heat sink. Int J Therm Sci 2015;89:174–84. doi:10.1016/j.ijthermalsci.2014.10.018.
[23]    Rios-Iribe EY, Cervantes-Gaxiola ME, Rubio-Castro E, Ponce-Ortega JM, González-Llanes MD, Reyes-Moreno C, et al. Heat transfer analysis of a non-Newtonian fluid flowing through a circular tube with twisted tape inserts. Appl Therm Eng 2015;84:225–36. doi:10.1016/j.applthermaleng.2015.03.052.
[24]    Yang H, Wen J, Gu X, Liu Y, Wang S, Cai W, et al. A mathematical model for flow maldistribution study in a parallel plate-fin heat exchanger. Appl Therm Eng 2017;121:462–72. doi:10.1016/j.applthermaleng.2017.03.130.
[25]    Sathish T, Mohanavel V. IWF based optimization of porous insert configurations for heat transfer enhancement using CFD. J Appl Fluid Mech 2018;11:31–7.
[26]    Borhani M, Yaghoubi S. Numerical simulation of heat transfer in a parallel plate channel and promote dissipative particle dynamics method using different weight functions. Int Commun Heat Mass Transf 2020;115:104606. doi:10.1016/j.icheatmasstransfer.2020.104606.
[27]    Temam R. Navier-Stokes equations: theory and numerical analysis. vol. 343. American Mathematical Soc.; 2001.