Cost Analysis of a Large Solar Plant with Parabolic Trough Concentrators Using Molten Salt Storage Tank

Document Type : Original Article


1 Mechanical Power Dept., Faculty of Engineering, Mattaria, Helwan University, Cairo, Egypt

2 College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah 5555, Saudi Arabia

3 High Institute of Engineering, Elshorouk Academy, Cairo, Egypt

4 Department of Mechanical Engineering, Benha Faculty of Engineering, Benha University, Benha, Egypt


Thermal storage tank is a standout amongst the most encouraging methods in solar thermal power stations operation. Accurate selection of appropriate storage system is a significant parameter to ensure the continuous working of thermal solar station during the absence of the sun. This work describes financial analysis of different locations of a 500MW Solar Plant in Egypt and also thermal tank design. The selected three locations which are investigated in this study are Aswan, EL-Arish and Hurghada to build this challenged size solar station. These locations cover the tree levels of the solar intensity in Egypt. This study is achieved by System Advisor Model (SAM) as financial analysis simulation tool. All the solar thermal power plants are working twenty-four hours per day and with sixteen full load hours of thermal energy storage (TES). Parametric design and cost analysis for each location, comparison between these locations are introduced to select the optimum location for 500MW solar power plant. The results of this study is considered a good orientation for feasibility study for CPS (concentrators parabolic system) projects, and it is needed in all over the world in particular, in Egypt for future to produce clean energy.


Google Scholar


Main Subjects

[1]     Ruegamer T, Kamp H, Kuckelkorn T, Schiel W, Weinrebe G, Nava P, et al. Molten Salt for Parabolic Trough Applications: System Simulation and Scale Effects. Energy Procedia 2014;49:1523–32. doi:10.1016/j.egypro.2014.03.161.
[2]     Trieb F. Concentrating solar power for the Mediterranean region 2005.
[3]     Trieb F. Trans-Mediterranean interconnection for concentrating solar power”, Technical Report, German Aerospace Center (DLR), Institute of Technical Thermodynamics, Section Systems Analysis and Technology, Assessment 2006.
[4]     Poullikkas A. Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region—A case study for the island of Cyprus. Renew Sustain Energy Rev 2009;13:2474–84. doi:10.1016/j.rser.2009.03.014.
[5]     Fthenakis V, Mason JE, Zweibel K. The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US. Energy Policy 2009;37:387–99. doi:10.1016/j.enpol.2008.08.011.
[6]     Izquierdo S, Montañés C, Dopazo C, Fueyo N. Analysis of CSP plants for the definition of energy policies: The influence on electricity cost of solar multiples, capacity factors and energy storage. Energy Policy 2010;38:6215–21. doi:10.1016/j.enpol.2010.06.009.
[7]     Sargent, Lundy. Assessment of parabolic trough and power tower solar technology costs and performance forecasts, NREL 2003.
[8]     Ho CK, Kolb GJ. Incorporating Uncertainty into Probabilistic Performance Models of Concentrating Solar Power Plants. J Sol Energy Eng 2010;132. doi:10.1115/1.4001468.
[9]     Krishnamurthy P, Mishra S, Banerjee R. An analysis of costs of parabolic trough technology in India. Energy Policy 2012;48:407–19. doi:10.1016/j.enpol.2012.05.041.
[10]   Kearney D, Herrmann U, Nava P, Kelly B, Mahoney R, Pacheco J, et al. Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field. J Sol Energy Eng 2003;125:170–6. doi:10.1115/1.1565087.
[11]   Gil A, Medrano M, Martorell I, Lázaro A, Dolado P, Zalba B, et al. State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renew Sustain Energy Rev 2010;14:31–55. doi:10.1016/j.rser.2009.07.035.
[12]   Medrano M, Gil A, Martorell I, Potau X, Cabeza LF. State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies. Renew Sustain Energy Rev 2010;14:56–72. doi:10.1016/j.rser.2009.07.036.
[13]   Esen M, Ayhan T. Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials. Energy Convers Manag 1996;37:1775–85. doi:10.1016/0196-8904(96)00035-0.
[14]   Laing D, Steinmann W-D, Tamme R, Richter C. Solid media thermal storage for parabolic trough power plants. Sol Energy 2006;80:1283–9. doi:10.1016/j.solener.2006.06.003.
[15]   Lovegrove K, Luzzi A, Soldiani I, Kreetz H. Developing ammonia based thermochemical energy storage for dish power plants. Sol Energy 2004;76:331–7. doi:10.1016/j.solener.2003.07.020.
[16]   Michels H, Pitz-Paal R. Cascaded latent heat storage for parabolic trough solar power plants. Sol Energy 2007;81:829–37. doi:10.1016/j.solener.2006.09.008.
[17]   Luzzi A, Lovegrove K, Filippi E, Fricker H, Schmitz-goeb M, Chandapillai M, et al. Techno-Economic Analysis of a 10 Mwe Solar Thermal Power Plant Using Ammonia-Based Thermochemical Energy Storage. Sol Energy 1999;66:91–101. doi:10.1016/S0038-092X(98)00108-X.
[18]   Yang Z, Garimella S V. Thermal analysis of solar thermal energy storage in a molten-salt thermocline. Sol Energy 2010;84:974–85. doi:10.1016/j.solener.2010.03.007.
[19]   Bradshaw RW, Siegel NP. Molten Nitrate Salt Development for Thermal Energy Storage in Parabolic Trough Solar Power Systems. ASME 2008 2nd Int. Conf. Energy Sustain. Vol. 2, ASMEDC; 2008, p. 631–7. doi:10.1115/ES2008-54174.
[20]   Kearney D, Kelly B, Herrmann U, Cable R, Pacheco J, Mahoney R, et al. Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy 2004;29:861–70. doi:10.1016/S0360-5442(03)00191-9.
[21]   Fernandes D, Pitié F, Cáceres G, Baeyens J. Thermal energy storage: “How previous findings determine current research priorities.” Energy 2012;39:246–57. doi:10.1016/
[22]   Mohamed MH, El-Sayed AZ, Megalla KF, Elattar HF. Modeling and performance study of a parabolic trough solar power plant using molten salt storage tank in Egypt: effects of plant site location. Energy Syst 2019;10:1043–70. doi:10.1007/s12667-018-0298-4.
[23]   Yuanjing W, Cheng Z, Yanping Z, Xiaohong H. Performance analysis of an improved 30 MW parabolic trough solar thermal power plant. Energy 2020;213:118862. doi:10.1016/
[24]   Khajepour S, Ameri M. Techno-economic analysis of using three Fresnel solar fields coupled to a thermal power plant for different cost of natural gas. Renew Energy 2020;146:2243–54. doi:10.1016/j.renene.2019.08.075.
[25]   Mostafavi Tehrani SS, Taylor RA, Nithyanandam K, Shafiei Ghazani A. Annual comparative performance and cost analysis of high temperature, sensible thermal energy storage systems integrated with a concentrated solar power plant. Sol Energy 2017;153:153–72. doi:10.1016/j.solener.2017.05.044.
[26]   Herrmann U, Kelly B, Price H. Two-tank molten salt storage for parabolic trough solar power plants. Energy 2004;29:883–93. doi:10.1016/S0360-5442(03)00193-2.
[27]   Ferri R, Cammi A, Mazzei D. Molten salt mixture properties in RELAP5 code for thermodynamic solar applications. Int J Therm Sci 2008;47:1676–87. doi:10.1016/j.ijthermalsci.2008.01.007.