Blast Mitigations of Mid Rise Structures by Cladding Material

Document Type : Original Article

Authors

1 Research Scholar, Civil Engineering Department, Government Engineering College Haveri Karnataka, India

2 Professor and HOD Civil Engineering Department, Government Engineering College Haveri Karnataka, India

Abstract

Structure exposed to blast load is unpredictable, causes severe damage to the structure and also takes the life of people.Cladding material is a light weight material, mobile, versatile, economical material used for energy abortion of the structure exposed to blast load. Here a study is made on ten story structure exposed to blast load. Each floor as a three degree of freedom that is one along translation between floor and the structure and two translation between structure and cladding material, totally thirty degree of freedom is considered. The cladding material is used for the connection of every floor. Rubber material is also used for the connection between the cladding and structure. The responses in terms of pressure impulse curve, story drift , story drift ratio is also considered.The maximum energy is observed by using cladding material of the structure and considerable amount of responses is reduced.

Highlights

Google Scholar

Keywords

Main Subjects


[1]     Cao L, Lu S, Laflamme S, Quiel S, Ricles J, Taylor D. Performance-based design procedure of a novel friction-based cladding connection for blast mitigation. Int J Impact Eng 2018;117:48–62. doi:10.1016/j.ijimpeng.2018.03.003.
[2]     Goel MD, Matsagar VA. Blast-Resistant Design of Structures. Pract Period Struct Des Constr 2014;19:04014007. doi:10.1061/(ASCE)SC.1943-5576.0000188.
[3]     Ashby MF, Evans T, Fleck NA, Hutchinson JW, Wadley HNG, Gibson LJ. Metal foams: a design guide. Elsevier; 2000.
[4]     Hanssen AG, Enstock L, Langseth M. Close-range blast loading of aluminium foam panels. Int J Impact Eng 2002;27:593–618. doi:10.1016/S0734-743X(01)00155-5.
[5]     Nammi SK, Edwards G, Shirvani H. Effect of cell-size on the energy absorption features of closed-cell aluminium foams. Acta Astronaut 2016;128:243–50. doi:10.1016/j.actaastro.2016.06.047.
[6]     Zhou H, Ma G, Li J, Zhao Z. Design of Metal Foam Cladding Subjected to Close-Range Blast. J Perform Constr Facil 2015;29:04014110. doi:10.1061/(ASCE)CF.1943-5509.0000606.
[7]     Ma GW, Ye ZQ. Energy absorption of double-layer foam cladding for blast alleviation. Int J Impact Eng 2007;34:329–47. doi:10.1016/j.ijimpeng.2005.07.012.
[8]     Reid SR, Peng C. Dynamic uniaxial crushing of wood. Int J Impact Eng 1997;19:531–70. doi:10.1016/S0734-743X(97)00016-X.
[9]     Hanssen AG, Olovsson L, Børvik T, Langseth M. Close-Range Blast Loading of Aluminium Foam Panels: A Numerical Study. IUTAM Symp. Mech. Prop. Cell. Mater., Dordrecht: Springer Netherlands; n.d., p. 169–80. doi:10.1007/978-1-4020-9404-0_18.
[10]   Ma GW, Ye ZQ. Analysis of foam claddings for blast alleviation. Int J Impact Eng 2007;34:60–70. doi:10.1016/j.ijimpeng.2005.10.005.
[11]   Li JD, Ma GW, Zhou HY, Du XL. Blast mitigation of civil structures by using density gradient aluminium foam cladding. Int J Prot Struct 2011;2:333–49.
[12]   Zhu F, Zhao L, Lu G, Wang Z. Structural Response and Energy Absorption of Sandwich Panels with an Aluminium Foam Core under Blast Loading. Adv Struct Eng 2008;11:525–36. doi:10.1260/136943308786412005.
[13]   Nurick GN, Langdon GS, Chi Y, Jacob N. Behaviour of sandwich panels subjected to intense air blast – Part 1: Experiments. Compos Struct 2009;91:433–41. doi:10.1016/j.compstruct.2009.04.009.
[14]   Wu C, Huang L, Oehlers DJ. Blast Testing of Aluminum Foam–Protected Reinforced Concrete Slabs. J Perform Constr Facil 2011;25:464–74. doi:10.1061/(ASCE)CF.1943-5509.0000163.
[15]   Qi C, Yang S, Yang L-J, Wei Z-Y, Lu Z-H. Blast resistance and multi-objective optimization of aluminum foam-cored sandwich panels. Compos Struct 2013;105:45–57. doi:10.1016/j.compstruct.2013.04.043.
[16]   Shen J, Lu G, Zhao L, Qu Z. Response of Curved Sandwich Panels Subjected to Blast Loading. J Perform Constr Facil 2011;25:382–93. doi:10.1061/(ASCE)CF.1943-5509.0000234.
[17]   Mullin MJ, O’Toole BJ. Simulation of energy absorbing materials in blast loaded structures. 8th Int. LS-DYNA Users Conf., 2004, p. 2–7.
[18]   Xia Y, Wu C, Zhang F, Li Z-X, Bennett T. Numerical Analysis of Foam-Protected RC Members under Blast Loads. Int J Prot Struct 2014;5:367–90. doi:10.1260/2041-4196.5.4.367.
[19]   Anagnostopoulos SA. Pounding of buildings in series during earthquakes. Earthq Eng Struct Dyn 1988;16:443–56. doi:10.1002/eqe.4290160311.
[20]   Davis RO. Pounding of buildings modelled by an impact oscillator. Earthq Eng Struct Dyn 1992;21:253–74. doi:10.1002/eqe.4290210305.
[21]   Polycarpou PC, Komodromos P, Polycarpou AC. A nonlinear impact model for simulating the use of rubber shock absorbers for mitigating the effects of structural pounding during earthquakes. Earthq Eng Struct Dyn 2013;42:81–100. doi:10.1002/eqe.2194.
[22]   E BW, A CP, S WP, J KJ, A SR. Explosion hazards and evaluation. Amsterdum, New York : Elsevier Scientific Publications. 1983.
[23]   Jarrett DE. Derivation of the British explosives safety distances. Ann N Y Acad Sci 1968;152:18–35.
[24]   Krauthammer T. Modern Protective Structures. CRC Press, New York 2005.
[25]   Shi Y, Hao H, Li Z-X. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads. Int J Impact Eng 2008;35:1213–27. doi:10.1016/j.ijimpeng.2007.09.001.
[26]   Fallah AS, Louca LA. Pressure–impulse diagrams for elastic-plastic-hardening and softening single-degree-of-freedom models subjected to blast loading. Int J Impact Eng 2007;34:823–42. doi:10.1016/j.ijimpeng.2006.01.007.
[27]   Dyke SJ, Spencer Jr BF, Sain MK, Carlson JD. Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater Struct 1996;5:565.