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Continuous wavelet transform.

Wavelet analysis is a new mathematical method and has been
increasingly applied in engineering in recent years. Unlike
Fourier transform, this method is particularly appropriate for
non-stationary  processes.  Exceptional localization can be
allowed using wavelet transform, both in time and frequency
domains. Wavelet transform has been rarely used in earthquake
engineering. A  preliminary study of continuous wavelet
transforms (CWTs) was conducted in this paper. As a rather
novel techniqgue, CWT application has generated enormous
interest in recent years. It has been successfully employed in
many fields, including the theories of communication and
ordinary, partial differential equations, signal and image
processing, and numerical analysis. As evidenced, exceptional
localizations of time-frequency domains have become possible
through CWTs. In this paper, CWT capability of providing a
full time-frequency representation of an earthquake record was
demonstrated. The Morlet mother wavelet was utilized to
calculate  the time-frequency localization of the desired
earthquake records. In this method, the time series of the
earthquake records, which were broken in a wave flume,
demonstrated the ability of the wavelet transform technique in
detecting the complex variabilities of signals in the time-
frequency domain. In this investigation, various spectral
representations resulting from the CWTs were discussed and
their applications for earthquake records were shown.
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1. Introduction

Wavelet analysis is particularly suitable for non-stationary processes and can yield localized
time-frequency information that cannot be available through the traditional Fourier transform
(FT). Wavelet transform, is used an advanced tool in processing signal. Wavelet abilities have
been used in different fields of civil engineering such as water engineering, structure engineering
and soil engineering [1-3]. Also there are many researches about the application of wavelet
transform in earthquake engineering [4—11]. A signal can be expressed in terms of sum of a
series of sinus and cosines using Fourier transform (FT) and fast Fourier transforms (FFT).
However: it has only frequency resolution and no time resolution in the FT and FFT methods
[12,13]. Another disadvantage of the FT is that low and high frequencies of signal can't be
separated by this method [14]. One solution for overcoming the shortcomings of the FT is
application of wavelet transform (WT) [15]. In this method, a fully scalable window can be used
for solving the signal-cutting problem. The window is moved along the signal and the spectrum
is determined for every position.

WT application in earthquake engineering has been investigated in numerous studies. For
example, Alonso et al. [16] used orthogonal WTs for identifying the stiffness loss in a spring-
mass-damper system with a single degree of freedom. A quantitative approach was adopted by
Yaghmaei-Sabegh [17] to detect pulse-like ground motions based on CWT. this approach is able
to clearly identify sudden jumps in the time history of earthquake records by considering the
contributions of different frequency levels. Nagarajaiah and Basu [18] developed a short-time
Fourier transform (STFT), empirical mode decomposition, wavelet techniques and Hilbert
transform (HT) for decomposing the free vibration responses of multi degree of freedom systems
into their modal components. When the modal components were gained, each one was processed
using HT to find the modal frequency and damping ratios. Pioldi and Rizzi [19] developed modal
identifications of output-only structural systems through a refined frequency domain
decomposition approach. The identification method was combined with a Gabor wavelet
transform, which resulted in an effective and self-contained outline of time-frequency analysis.
Ansari et al [20] examined the characteristics and capabilities of a wavelet denoising method for
correcting highly noisy earthquake records. In the frequency domain, this technique was found to
be able to attenuate noises in the whole frequency range of engineering, whereas in the time
domain, it could detect and eliminate noises. Also, some research has been conducted on the use
of WT for earthquake records. Todorovska et al predicted the goodness-of-fit of strong ground
motions from earthquakes through the wavelet approximations of nonlinear structural responses
and concluded that strong motion records on a wavelet basis can be developed and represented as
the sum of pulses with a relatively small number [21]. Pnevmatikos and Hatzigeorgiou
[22]described the application of discrete wavelet transform (DWT) for the damage detection of a
framed structure subjected to strong earthquake excitations and the results revealed the
effectiveness of this approach. Also, Heidari et al did a lot of research on wavelets and their
applications [23,24]. They used types of DWT for dynamic analysis of structures induced by
earthquake loads [25,26]. Then they optimized the structures [27,28] and approximated their
strong ground motions [29]. Also, many researches have been conducted about the effect of
earthquake on buildings [30,31].
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In this article, CWT application for processing earthquake records was discussed and an attempt
was made to present some beneficial quantitative results. The research was organized as follows:
An overview of FT was given in the 2" section. A discussion on the STFT theory and its
resolution was provided in the 3™ section. WT fundamentals and its difference from FT were
presented in the 4™ section. Section 5 was dedicated to CWT application for processing
earthquake records and finally, the main conclusions were given in section 6.

2. Fourier transform

A function of time (a signal) is decomposed into its constituent frequencies by the Fourier
transform (FT). This process is similar to the way can be expression of a musical chord based on
the volumes and frequencies of its constituent notes. The term Fourier transform denotes to both
the frequency domain representation and the mathematical operation, relating the frequency
domain representation with a function of time. The Fourier transform of a function of time is
a complex-valued function of frequency. In this function magnitude (modulus) shows the value
of frequency in the original function. Also; the argument of FT is the phase offset of the basic
sinusoid in that frequency. The Fourier transform is not restricted to functions of time, while
the domain of original function is called "time domain". The original function can be synthesized
from its frequency domain representation by a transform namely inverse Fourier transform.

If a signal s(?) fulfills the finite energy (E) condition, it will be defined as follow [32]:

E=["7|s(t)]dt < oo (1)
Then, the FT of s(?) exists as follows [32]:

+o . 2
S(f) = j s(t)e 2mtiqe @
where ¢ ;nd findicate time and frequency, respectively. A capital letter S is used to represent the
FT of s. The inverse FT is displayed as follows [32]:

s(t) = [ S(He*™tdf 3
Let's assume a fixed random procedure for signal s(z). Unlike the deterministic signal of the
finite energy, an unrestrained total energy will be achieved. Via the frequency distribution of the
signal power, E/T, we can overcome this problem. As T represents the record time series, the
function of E/T quantity will be time-restricted.

2.1. Short time fourier transforms

The short-time Fourier transform (STFT), is a Fourier-related transform used to determine the
sinusoidal frequency and phase content of local sections of a signal as it changes over time [33].

To produce a stationary signal s(#) for inserting time information into its frequency domain,
dividing the signal into sufficiently small segments would be an obvious alternative. Then, FT
can be applied to each segment. To this goal, the boxcar window as a frequently used window
function w is selected in the form of the following unsmoothed Gaussian function [34]:
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-t 32
w(t) = e 4
The window width is determined by a. Through the multiplication of the window function by the
signal, another signal is produced. This method is known as STFT.

Let's assume TO to be the window width. Then, by regarding the time instant t0, the time
intervals of t0-T0/2 and t0+T0/2 are overlapped by the window function. STFT for time t0 can
be provided by multiplying signal s(t) by window w and integrating the product within this
interval. Then, the window is shifted to a new position via the time step A7 until the signal stops.
A summary of the whole process of STFT determination is presented as follows [34]:

)
STFT(z, f) = f S(OW* (¢
t
where a complex conjugate quantity is represented by the asterisk. The time-frequency
transformation of the signal can be found through a new STFT coefficient calculation for every

time 7 and frequency f.

Despite FT, the window in STFT has a limited length and thus, no perfect resolution of the
frequency can be achieved. This perfect resolution can be obtained by assuming an unlimited
length of the window, but at the cost time of a complete information loss. Thus, an adequately
short window should be chosen for gaining a stationary record. By making the window narrower,
a better time resolution will be achieved; however, a worse resolution of frequency will be
inevitable. Besides being applied to the positions and momentums of moving particles in
quantum mechanics, this principle can be utilized to get the time-frequency information of a
signal. The types of spectral components existing in their related time instances are not known. A
poor frequency, but good time resolution can be represented by a narrow window and vice versa.
It should be noted that the stationary state may be violated by a wide window. The resolution
dilemma in the time-frequency domain can be somewhat solved by wavelet transform.

3. Wavelet transform

Wavelet transform is used in the variation analysis of time series [19]. FT does not refer to a
frequency location. Time localization can be obtained using STFT. Also, window length has been
regarded to be fixed. Unlike FT, WT considers the length of an analyzer window in relation with
frequency. This transform changes the time series into a 3D space, including time, scale, and
magnitude][1][1. enerally, the CWT of signal s(?) is defined as follows [35]:

CWT(z,b) = f " s(0g* (. bydt (6)

where g(.) is the mother wavelet; variable 7 > 0 denotes the scale factor; b indicates wavelet
translation over time; and CWT(z, b) represents wavelet coefficient, which is obtained by
applying the transform on the time series s(?) in a scale T based on a time delay b. All the window
functions are called daughter wavelets that can be calculated as follows [35]::
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_ 1o t- ()
9@h) = =9

3.1 Continuous wavelet transform

The wavelet at a given scale corresponding to a frequency is close to a signal, which includes a
major component of that frequency at a particular location. At this point, the corresponding
coefficient of CWT(t, b) possesses a rather large value. Hence, the CWT(t, b) is regarded as a
microscope characterized by magnification 57, a location determined by parameter 7, and the
optics specified by function g(z,b). The simplest method to be adopted is to determine CWT (t, b)
via integral Equation 6, but it is the most time-consuming approach. Alternatively, the spectral
CWT(t, b) can be represented as [36]:

+00
WT(z,b) =Vb f e™i 6" (bw)S (w)dw (8)
where G(w) and S(w) stand for the FT of g(¢) and s(2), respectively.

The types of features present in the time series are commonly reflected by the CWT. A boxcar-
like wavelet and a smooth function are more suitable for the time series of sharp steps and the
smoothly varying ones, respectively. However, it will not be critical to choose a wavelet function
if the spectra of the wavelet power are not primarily focused on. Morlet wavelet is a widely
utilized mother wavelet that can be exhibited as follows [37]:
2
g(® = ) eie
Using Equation 7, Morlet wavelet takes the following form [37]:

)

1 _(f-_f)z T (10)
(t,b) = —e \W2b e
I Vb
A clear representation of the frequency nature of parameter ¢ is achieved by assuming c=2x.
Then, Equation 10 can be displayed as follows:

1 () e (11)
T,b) = —e W2b/ """ b
9(wb) Vb

A-T
The sinusoidal wave of the frequency of %ﬂ; should represented by e’™ 5 to treat the scale

dilation b as a period. To make a more complete picture of a wavelet function, using a set of
scales b in Equation 11 would be necessary. It is easy to take this set of scales as a function of
powers-of-two coefficients [38]:

b; = by2%¢ i (12)
=12,...M
in which

1
M= Elogz(NAtbgl) (13)

where N and A4t are the number of values in the time series and time sampling, respectively. by
and by represent the smallest and largest reasonable scales, respectively. To obtain an
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approximate 24¢ for the equivalent Fourier period, a proper value of by should be selected. To
provide sufficient sampling in scale b, 0 as a representative of a scale factor should be
considered. A value of nearly 0.5 for 0 in Morlet wavelet would be still the largest value
depicting a smooth wavelet spectrum. Nonetheless, finer resolutions are resulted by the smaller
values of . Similar to STFT, in which a signal is multiplied by a window, WT analysis is
performed using a wavelet. However, the width of the window changes by computing the
transform for each spectral component, which is the most important feature of WT. To examine
some properties of WT energy, it is first shown to conserve the total energy as follows:

f s (9
f f+°° lWT(T L

n Wthh coefficient Cl/) 1S:

+oo 2
- | 6@ (15)

w
Where G(w) represents the FT of function g(z). Using the wavelet transform and coefficientCy,

various wavelet energy spectra and spectral densities can be defined. Specially, the so-called

time-scale energy density can be determined as follows:
E, = |WT(z,b)|?b (16)
Using the integration of scale b into Equation 16, the local energy density can be calculated as
[39]:
1 (00}
EZ = _f Elb_ldb
Cy Jo

The global wavelet energy spectrum E5 can be obtained by integrating time t into Equation 16 :

(18)

(17)

E3 = ] Eldt
0

Torrence and Compo developed a reduced amount of the necessary smoothing with an
increasing scale to make the smoothed Fourier spectrum approach [38]. Percival also indicated
the global wavelet spectrum[40]. The total energy of time series s(z) can be determined as
follows:

1 (° 19
E= —f Esb~tdb (15)
Cy Jo
By substituting Equations 16 and 18 into Equation 19, we will get the following equation:
1 o 400 _ 1 0 ~+00 —
E= afo J__ E;b~'dtdb = afo J__IWT(z,b)|?b~?drdb (20)

This would verify the conservation of energy represented in Equation 14.
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4. Resemblance of wavelets to fourier modes

In this section, the association between WT and FT will be presented for interpreting the
processing results of earthquake records. This is not a direct relationship for arbitrary wavelets.
However, the relation between WT and FT in Morlet wavelet was presented owing to its periodic
feature in this paper. Assuming the periodic wave of frequency wo and unit amplitude of

s(t) = e®@ot (21)
As shown, the FT of the signal is S{(w)=0(w-w,) in which ¢ stands for Dirac’s delta function.
Through Equation 8, we get:

WT(t,b) = Vb [*7 e®™ G*05@=00d0 = [} on(0_0 7i) G * (hw_0) (22)
Thus,

[WT(z,b)|? = b|G*(bwy)|? (23)
Regarding Equation 9, Fourier transform G*(bw,) in Morlet wavelet will be as follows:

|G* (bawy)| = e~ @09 (24)

By substituting Equation 24 into Equation 23, we get the following condition:

IWT(z,b)|? = be~Pwo=0)* (25)
Thereby, a maximum correlation is achieved between the WT and a component of FT with
frequency w,, as follows:

AIWT(tb)I?] _ 0 (26)
db

or

2w3b% — 2cwgh—1 =0 (27)

Equation 27 can be realistically solved only by the following equation:

b=Qwy) Hc++c2+2) (28)

Considering w, = 2Ty ! , a linear relationship is yielded between scale b and period 7Tp in the
following form:

b= 4n)(c++c?+2)T, (29)
=aT,

where

a=A4n)"(c+c?+2) (30)

Equation 29 represents scale b as a physical dimension for time. Equation 30 results in a =
1.0125 by assuming ¢ = 2m. When ¢ = 2w — (4m)~! = 6.2036, scale b becomes completely
equivalent to 7y (&« = 1). The value of ¢=6.2036 was applied in this paper as discussed below.
The second term of Morlet wavelet representing an oscillatory nature is underlined by this value,
which is a very suitable choice for processing the data of earthquake waves [41]. Thus, almost
identical values are obtained for scale b and Fourier period 7 in Morlet wavelet. Notably, Fourier
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period would be differerent from scale b in other mother wavelets. For instance, Fourier period T
would be 4 times larger than scale b for Mexican hat wavelets.

5. Results and discussion

5.1. CWT Application to earthquake records

In this section, 2 examples of CWT application for processing earthquake records, i.e., Bam
(2003) and Silakhor (2006) earthquakes in Iran will be presented and the records will be
decomposed with a time interval of 0.02 s.

Bam earthquake happened at 01:56:56 GMT around Bam city in southeastern Iran at the local
time of 05:26:26 A.M on the 26™ of December 2003 (Mw=6.5) and led to a great life loss since
most of the inhabitants were sleeping then.

Silakhor earthquake of March, 31, 2006 (Mw=6.1) occurred around Dorod city in western Iran at
02:40:04 GMT (local time of 04:47:00). Here, the FT and CWT of Silakhor earthquake were
computed. Its earthquake record and FT are exhibited in Figures 4 and 5, respectively.

5.1. Example 1: bam earthquake record

Here, a computation of the FT and CWT of Bam earthquake were presented. The earthquake
record and FT are displayed in Figures 1 and 2, respectively. The CWT of the earthquake record
is portrayed in Figure 3. By comparing Figures 2 and 3, the highest frequency of the earthquake
record was found to be 0.69 Hz corresponding to scale 1.48. The major part of FT demonstrated
a frequency range of 0.6-0.75 Hz, which was similar to the scale range of 1.35-1.68, thus
indicating the highest range of frequency. The time of each frequency could be distinguished by
referring to Figure 3 and the output measurements programmed for this purpose. For instance,
the time for the frequency of 0.69 Hz corresponding to scale 1.48 is 18.28 sec. The time range of
the above-mentioned frequency range was 18.22-18.4 sec, during which all the constructions
with the same frequencies as the dominant frequency of Bam earthquake (0.69 Hz) could have
been most dangerously affected. Similarly, the time ranges of the other frequencies of the
earthquake record could be computed.

R

Acceleration (cm/s"2)
g8
—_—

1 1 1 1 1 1
0 10 20 30 40 50 80 70
Time (sec)

Fig. 1. The Bam earthquake record.
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Fourier Transform

Wiy MWWWMW@E%

0 1 2 3 4 5§ 6 7 8 9 10 11 12 13 14 15 16 17 8 19 20 2
Frequency

Fig. 2. FT of the Bam earthquake record.

1500
1000
500
0

-500 Ym'
-1000 |
-1500

CWT

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Time(sec)
Fig. 3. Two dimensional WT of the Bam earthquake record.
Example 2: Silakhor earthquake record

The CWT of the earthquake record is portrayed in Figure 6. By comparing Figures 5 and 6, the
highest frequency of the earthquake record was discovered to be 3.58 Hz corresponding to scale
0.28. The major part of FT had a frequency range of 3.3-4.3 Hz, representing the highest
frequency range. This range of frequency could be attributable to the scale range of 0.23-0.3. By
referring to Figure 6 and the output measurements programmed, we were able to distinguish the
time of each frequency. For instance, the time of the frequency 3.58 Hz corresponding to scale
0.28 was found to be 25.5 sec. Accordingly, the time range of the above-mentioned frequency
range was 25-26 sec, indicating the most perilous range for all the constructions that had a
frequency similar to the dominant frequency of the earthquake record. The main frequency of
Silakhor earthquake was found to be 3.58 Hz. Similarly, we could compute the times of the other
frequencies for this earthquake record.
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Acceleration (cm/s”2)

Time (Sec)
Fig. 4. The Silakhor earthquake record.
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Fig. 5. FT of the Silakhor earthquake record.
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Fig. 6. Two dimensional WT of the Silakhor earthquake record.

6. Conclusion

CWT allows localization both in the time domain and in the frequency domain, which can be
changed from a minimum to a maximum value as chosen by the user. The two mentioned
examples demonstrated CWT capability in providing a full time-frequency localization of
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earthquake records. The processing of the time series recorded for Bam and Silakhor earthquakes
revealed CWT ability in detecting the complex variations of the relevant signals within the time-
frequency domains. The changes in the frequencies corresponding to maximum WTs at particular
times highly resembled those occurred in the recorded frequencies. Interestingly, the impacts of
some low-frequency components that cannot be clearly depicted by classical spectrum can be
represented by WT. Besides these results, some other resuls are also obtained as following:

e If the time of frequencies is given, the second related to the most motivation of structure can
be obtained using structural dynamic methods.

e After specifying frequency time, if Resonance phenomenon is possible, the time related to
resonance frequency can be obtained.

e After specifying frequency time, if the active control systems of structure is available, the
system can be made smart that in those seconds, they will make better performance for the
structure.
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