Three-Dimensional Modelling of Concrete Mix Structure for Numerical Stiffness Determination

Document Type : Original Article

Authors

1 Mechanical Eng. Dept., College of Eng., KFU, KSA

2 department of civile ngineering, faculty of engineering, Hashemite university , Zarka, jordan

Abstract

A three dimensional (3-D) numerical model with explicit representation of two distinctive phases is used for precise prediction of the stiffness and Poisson’s ratio of concrete mixture, CM. Using ANSYS code, a 3-D macro scale numerical finite elements model was developed. The aggregates size, shape and distribution are created randomly using enclosing spheres. The sizes of spheres determine the nominal sizes of stone aggregates. Uniform simplified regular spherical stones aggregates are also considered for comparison purposes. The obtained results are compared with experimental and numerical models ones from the literature. The comparison shows a reliable and reasonable agreement. The results are found to be bounded by the upper and the lower bound of the mixtures rule. The results show a close agreement with Hobbs model as well. Therefore, the finite element model perform well under induced compression loading for predicting the stiffness and the Poisson’s ratio of the concrete mix.

Highlights

Google Scholar

Keywords

Main Subjects


[1]      Bilim C, Atiş CD, Tanyildizi H, Karahan O. Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv Eng Softw 2009;40:334–40. doi:10.1016/j.advengsoft.2008.05.005.
[2]      Sarıdemir M. Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic. Adv Eng Softw 2009;40:920–7. doi:10.1016/J.ADVENGSOFT.2008.12.008.
[3]      Sarıdemir M. Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks. Adv Eng Softw 2009;40:350–5. doi:10.1016/J.ADVENGSOFT.2008.05.002.
[4]      Vakhshouri B, Nejadi S. Prediction of compressive strength of self-compacting concrete by ANFIS models. Neurocomputing 2018;280:13–22. doi:10.1016/J.NEUCOM.2017.09.099.
[5]      Yaseen ZM, Deo RC, Hilal A, Abd AM, Bueno LC, Salcedo-Sanz S, et al. Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv Eng Softw 2018;115:112–25. doi:10.1016/J.ADVENGSOFT.2017.09.004.
[6]      Li G, Zhao Y, Pang S-S, Li Y. Effective Young’s modulus estimation of concrete. Cem Concr Res 1999;29:1455–62. doi:10.1016/S0008-8846(99)00119-2.
[7]      Zhou R, Song Z, Lu Y. 3D mesoscale finite element modelling of concrete. Comput Struct 2017;192:96–113. doi:10.1016/J.COMPSTRUC.2017.07.009.
[8]      Mahdi M, Marie I. Numerical Simulation of Concrete Mix Structure and Detection of its Elastic Stiffness ARTICLE INFO ABSTRACT List of nomenclatures CM concrete mix E CM Elastic stiffness of concrete mix. J Comput Eng Phys Model 2018;1:12–22. doi:10.22115/cepm.2018.54011.
[9]      Thirumalaiselvi A, Anandavalli N, Rajasankar J. Mesoscale studies on the effect of aggregate shape idealization in concrete. Mag Concr Res 2018:1–34. doi:10.1680/jmacr.17.00184.
[10]    Li J, Liu Z, Qu XF, Zhu CQ, Zhang Y. Finite Element Analysis of Compressive Strength of Recycled Coarse Aggregate-Filled Concrete. Adv Mater Res 2011;250–253:331–4. doi:10.4028/www.scientific.net/AMR.250-253.331.
[11]     Tarek I. Zohdi, Peter Wriggers. An Introduction to Computational Micromechanics - Tarek I. Zohdi, Peter Wriggers - Google Books. Springer; 2005.
[12]    Lie HA, Nurhuda I, Setiawan Y. The Effect of Aggregate Shape and Configuration to the Concrete Behavior. Smart Sci 2014;2:85–90. doi:10.1080/23080477.2014.11665609.
[13]    Anson M, Newman K. The effect of mix proportions and method of testing on Poisson’s ratio for mortars and concretes. Mag Concr Res 1966;18:115–30. doi:10.1680/macr.1966.18.56.115.
[14]    Häfner S, Eckardt S, Luther T, Könke C. Mesoscale modeling of concrete: Geometry and numerics. Comput Struct 2006;84:450–61. doi:10.1016/j.compstruc.2005.10.003.
[15]    Callister WD, Rethwisch DG. Materials Science and Engineering An Introduction Library of Congress Cataloging-in-Publication Data 2003.
[16]    Hobbs DW. The dependence of the bulk modulus, Young’s modulus, creep, shrinkage and thermal expansion of concrete upon aggregate volume concentration. Matériaux Constr 1971;4:107–14. doi:10.1007/BF02473965.
[17]    Tasdemir MA, Karihaloo BL. Effect of Type and Volume Fraction of Aggregate on the Fracture Properties of Concrete. Swets & Zeitlinger 2001;90:2651–825.