On the Study of Magnetohydrodynamic Squeezing Flow of Nanofluid between Two Parallel Plates Embedded in a Porous Medium

M.G. Sobamowo¹, L.O. Jayesimi², and M.A. Waheed³

1. Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria
2. Works and Physical Planning Department, University of Lagos, Akoka, Lagos, Nigeria
3. Department of Mechanical Engineering, Federal University of Agriculture, Abeokuta, Nigeria

Corresponding author: email@gmail.com
http://dx.doi.org/10.22115/CEPM.

ARTICLE INFO

Article history:
Received:
Revised:
Accepted:

Keywords:
Squeezing flow, Nanofluid, Magnetic field, Parallel plates, Differential Transformation Method.

ABSTRACT

A study of magnetohydrodynamic squeezing flow of nanofluid between two parallel plates embedded in a porous medium is presented in this work. The ordinary differential equation which is transformed from the developed governing partial differential equations is solved using differential transformation method. The accuracy of the results of the approximate analytical method are established as they agree very well with the results numerical method using fourth-fifth order Runge-Kutta-Fehlberg method. Using the developed analytical solutions, the parametric studies reveal that when the velocity of the flow increases during the squeezing process, the Hartmann and squeezing numbers decrease while during the separation process, the velocity of the fluid increases with increase in Hartmann and squeezing numbers. Also, the velocity of the nanofluids further decreases as the Hartmann number increases when the plates move apart. However, it is revealed that increase in nanotube concentration leads to an increase in the velocity of the flow during the squeezing flow. The present study will be useful in various industrial, biological and engineering applications.
1. Introduction

The various industrial, biological and engineering applications of flow of squeezing flow of fluid between parallel plates have been the impetus for the continued interest and generation renewed interests on the subject. Also, the continuous technological developments have shown the various industrial, biological and engineering applications etc. These various applications coupled with the practical significance of the phenomena have in recent times made the process an increasing area of an active research fields in fluid dynamics. Although, the pioneer work and the basic formulations on the flow phenomena was carried out Stefan [1], the analysis of the squeezing flow process has continued to receive tremendous attention in the past few decades. However, the applications of Reynolds equation for the squeezing flow analysis in earlier studies [1-3] led the studies to insufficient and inaccurate analyses as shown by Jackson [4] and Usha and Sridharan [5]. Consequently, further studies have been presented in recent times to give a better insight into the flow phenomena. Among these study, Usha and Sridharan [5] investigated the arbitrary squeezing flow of a viscous fluid between elliptic plates while in an earlier work, Yang [6] considered unsteady laminar boundary layers in an incompressible stagnation flow. In a group of research studies, Kuzma [7], Tichy and Winer [8] and Grimm [9] examined the effects of fluid inertial on squeezing flow. Moreover, in order to gain better insight into the flow process, further works has been done [5-15].

Analyses of unsteady squeezing flow of Casson and viscous fluids between two plates have been carried out by Khan [15] and Rashidi et al. [16], respectively. Effects of heat transfer on the squeezing flow characteristics of viscous fluid was investigated by Duwairi et al. [17] while Qayyum et al. [18] analyzed the squeezing flow pattern of second grade and micropolar fluids. The squeezing flow behaviour of dusty fluids was examined by Hamdam and Baron [19]. The flow heat transfer of viscous fluid on a porous surface of a squeezing flow problem was presented by Mahmood [20]. Using differential transformation method, approximate analytical solutions were developed by Hatami and Jing [21] to study the squeezing flow of Newtonian and non-Newtonian nanofluids. An extended work on heat and mass transfer of a rotating squeezing flow of nanofluid was submitted by Mohyud-Din et al. [22]. In another work [23], the authors scrutinized the squeezing flow of Casson fluid under the impacts of effects of thermal radiation. Qayyum and Khan [24] investigated the squeezing problem immersed in a porous medium while Qayyum et al. [25] studied the influence of slip on the unsteady axisymmetric squeezing flow of viscous fluid through a porous medium channel. A study on heat and mass transfer in the unsteady squeezing flow between parallel plates by Mustafa et al. [26]. In different studies, the effects of magnetic field on the steady and unsteady squeezing flow of different Newtonian and Non-Newtonian fluids have been examined by Siddiqui et al. [27], Domairry and Aziz [28], Acharya et al. [29], Ahmed et al. [30], Ahmed et al. [31], Khan et al. [32, 33], Hayat et al. [34], Khan et al. [35], Ullah et al. [36] etc. In a recent study, combined effects of slip and magnetic field on the squeezing flow problem was studied by Sobamowo and Jayesimi [37] using Chebyshev spectral collocation method. In a previous study, methods such as regular and singular perturbation and differential transformation has been used by Sobamowo and Akinshilo [38] and Sobamowo [39] to analyze such flow problem under the magnetic field. Effects of nanoparticle shapes and Ferro-magnetic magnetic field on peristaltic flow of Copper-water by
Akbar and Butt [40] while Sheikholesmi and Bhatti [41] examined the impacts of magnetic field and shape of nanoparticles on the heat transfer characteristic of nanofluid. Further studies on the effects of magnetic fields, thermal radiation, nanoparticles, chemical reactions etc. are presented in [42-50].

In the past and recent studies, different numerical and analytical approximate methods have been adopted to analyze the nonlinear problems of the flow processes. In the present study, differential transformation method is used to analyze the magnetohydrodynamic squeezing flow of nanofluid between two parallel plates embedded in a porous medium. Parametric studies are carried out using the approximate analytical solutions.

2. Description of the problem and model development

Fig. 1 shows an unsteady two-dimensional squeezing flow of nanofluid between two parallel plates placed at time-variant distance and under the influence of magnetic field. In such flow problem as presented in the figure, it is assumed that the flow of the nanofluid is laminar, stable, incompressible, isothermal, non-reacting chemically, the nanoparticles and base fluid are in thermal equilibrium and the physical properties are constant. The fluid conducts electrical energy as it flows unsteadily under magnetic force field. The fluid structure is everywhere in thermodynamic equilibrium and the plate is maintained at constant temperature.

Following the assumptions, the governing equations for the flow are given as [37-39]

\[
\frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{u}}{\partial y} = 0
\]

\[
\rho_{nf} \left(\frac{\partial \bar{u}}{\partial t} + \bar{u} \frac{\partial \bar{u}}{\partial x} + \bar{v} \frac{\partial \bar{u}}{\partial y} \right) = -\frac{\partial \bar{p}}{\partial x} + \mu_{nf} \left(\frac{\partial^2 \bar{u}}{\partial x^2} + \frac{\partial^2 \bar{u}}{\partial y^2} \right) - \sigma B_0^2 \bar{u} - \frac{\mu_{nf} \bar{u}}{K_p}
\]

\[
\rho_{nf} \left(\frac{\partial \bar{v}}{\partial t} + \bar{u} \frac{\partial \bar{v}}{\partial x} + \bar{v} \frac{\partial \bar{v}}{\partial y} \right) = -\frac{\partial \bar{p}}{\partial y} + \mu_{nf} \left(\frac{\partial^2 \bar{v}}{\partial x^2} + \frac{\partial^2 \bar{v}}{\partial y^2} \right) - \frac{\mu_{nf} \bar{v}}{K_p}
\]

where

\[
\rho_{nf} = \rho_f (1-\phi) + \rho_s \phi
\]
\[\mu_{ef} = \frac{\mu_f}{(1 - \phi)^{2.5}} \] \hspace{1cm} (Brinkman model) \hspace{1cm} (4-b)

and the magnetic field parameter is given as

\[B(t) = \frac{B_0}{\sqrt{1 - \alpha t}} \] \hspace{1cm} (5)

Under the assumption of no-slip condition, the prevailing boundary conditions are stated as

\[y = h(t) = H \sqrt{1 - \alpha t}, \quad \bar{u} = 0, \quad \bar{v} = -V_w, \quad y = 0, \quad \frac{\partial \bar{u}}{\partial y} = 0, \quad v = 0 \]
\[x = 0, \quad u = 0 \] \hspace{1cm} (6)

Table 1 and 2 present the thermal-physical properties of the base fluid and the nanoparticles, respectively

Table 1.
Thermal-physical properties of the base fluid [40-42, 51-52].

<table>
<thead>
<tr>
<th>Base fluid</th>
<th>(\rho) (kg/m(^3))</th>
<th>(c_p) (J/kgK)</th>
<th>(k) (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure water</td>
<td>997.1</td>
<td>4179</td>
<td>0.613</td>
</tr>
<tr>
<td>Engine oil</td>
<td>884</td>
<td>1910</td>
<td>0.144</td>
</tr>
<tr>
<td>Kerosene</td>
<td>783</td>
<td>2010</td>
<td>0.145</td>
</tr>
<tr>
<td>Ethylene Glycol</td>
<td>1115</td>
<td>2430</td>
<td>0.0253</td>
</tr>
</tbody>
</table>

Table 2.
Thermal-physical properties of nanoparticles [40-42, 51-52].

<table>
<thead>
<tr>
<th>Nanoparticles</th>
<th>(\rho) (kg/m(^3))</th>
<th>(c_p) (J/kgK)</th>
<th>(k) (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (Cu)</td>
<td>8933</td>
<td>385</td>
<td>401</td>
</tr>
<tr>
<td>Silver (Ag)</td>
<td>10500</td>
<td>235.0</td>
<td>429</td>
</tr>
<tr>
<td>SWCNTs</td>
<td>2600</td>
<td>42.5</td>
<td>6600</td>
</tr>
<tr>
<td>Aluminum oxide (Al(_2)O(_3))</td>
<td>3970</td>
<td>765</td>
<td>40</td>
</tr>
<tr>
<td>Copper (II) Oxide (CuO)</td>
<td>783</td>
<td>540</td>
<td>18</td>
</tr>
<tr>
<td>Titanium dioxide (TiO(_2))</td>
<td>4250</td>
<td>686.2</td>
<td>8.9538</td>
</tr>
</tbody>
</table>

Introducing the following dimensionless and similarity variables into Eq. (1) - (3).

\[\bar{u} = \frac{\alpha x}{(1 - \alpha t)^{0.5}} f'(\eta, \tau), \quad \bar{v} = -\frac{\alpha x}{(1 - \alpha t)^{0.5}} f(\eta, \tau), \quad \eta = \frac{y}{H(1 - \alpha t)^{0.5}} \]
\[Re = -SA(1 - \phi)^{2.5} = \frac{\rho_{ef} HV_w}{\mu_{ef}}, \quad S = \frac{\alpha H^2}{2v_f}, \quad Da = \frac{K_p}{H^2}, \quad A = (1 - \phi) + \phi \frac{\rho_s}{\rho_f} \]
\[f'''' + Re \left(\eta f''' + 3f'' + ff' - f''f' \right) - M^2 f'' - \frac{1}{Da} f'' = 0 \] \hspace{1cm} (7)

one arrives at

\[f'''' + Re \left(\eta f''' + 3f'' + ff' - f''f' \right) - M^2 f'' - \frac{1}{Da} f'' = 0 \] \hspace{1cm} (8)
Alternatively, Eq. (8) can also be expressed as
\[f'''' - SA(1-\phi)^2.5(\eta f''' + 3f'' + ff' - f') - M^2 f'' - \frac{1}{Da} f'' = 0 \] (9)

and the boundary conditions are
\[f(0) = 0, \quad f''(0) = 0 \]
\[f(1) = 1, \quad f'(1) = 0 \] (10)

The boundary conditions depict the condition of no-slip on the disk.

3. Analysis of the differential equation using differential transform method

The developed nonlinear equation in Eq. (9) cannot be solved exactly and analytically. However, we apply an approximated analytical method such as differential transformation method (DTM) as introduced by Zhou [53] to solve the equation. The basic definitions, the properties and some applications of the method can be found in [39, 54-58]

Using the DTM operational properties as stated in [39, 53-58], the differential transform of Eq. (8) is

\[
(m+1)(m+2)(m+3)(m+4) F(m+4) \\
+3(m+1)(m+2) F(m+2) + \\
\sum_{l=0}^{m} \delta(l)(m-l+1)(m-l+2)(m-l+3) F(m-l+3) \\
+Re \left[\sum_{l=0}^{m} F(m-l)(l+1)(l+2)(l+3) F(l+3) \\
- \sum_{l=0}^{m} (m-l+1) F(m-l+1)(l+1)(l+2) F(l+2) \right] \\
- \left(M^2 + \frac{1}{Da} \right)(m+1)(m+2) F(m+2) = 0
\] (15)

where

\[
\delta(l) = \begin{cases}
1 & l = 1 \\
0 & l \neq 0
\end{cases}
\]

The boundary conditions are
\[F(0) = 0, \quad (m+1)(m+2) F(m+2) = 0 \quad \Rightarrow m = 0, \quad F(2) = 0 \]
\[\sum_{l=0}^{m} F(m) = 1, \quad \Rightarrow m = 1, \quad F(1) = k_1, \]
\[\sum_{l=0}^{m} (m+1) F(m+1) = 0, \quad \Rightarrow m = 2, \quad F(3) = k_2 \] (16)
Therefore, we have the following boundary conditions in DTM domain

\[
F(0) = 0, \quad F(2) = 0, \quad F(1) = k_1, \quad F(3) = k_2
\]

where \(k_1\) and \(k_2\) are the constants which will be determined through the boundary conditions

\[
F(m+4) = \frac{1}{(m+1)(m+2)(m+3)(m+4)} \left[\frac{M^2 + \frac{1}{Da}}{M^2 + \frac{1}{Da}} \right] k_2 - 3R e k_1
\]

Using \(m=0, 1, 2, 3...\) in the above recursive relations, one arrives at

\[
F(4) = 0
\]

\[
F(5) = \frac{1}{20} \left[\left(M^2 + \frac{1}{Da} \right) k_2 - 3R e k_1 \right]
\]

\[
F(6) = 0
\]

\[
F(7) = \frac{1}{840} \left[\left(M^2 + \frac{1}{Da} \right) \left(M^2 + \frac{1}{Da} \right) k_2 - 3R e k_1 \right] + \left(9R e^2 k_2 + 12R e k_2^2 + 6R e^3 k_2 k_2 \right)
\]

\[
F(8) = 0
\]

\[
F(9) = \frac{1}{60480} \left[\left(M^2 + \frac{1}{Da} \right) \left(M^2 + \frac{1}{Da} \right) \left(M^2 + \frac{1}{Da} \right) k_2 - 3R e k_1 \right] \left(9R e^2 k_2 + 12R e k_2^2 + 6R e^3 k_2 k_2 \right)
\]

\[
F(10) = 0
\]

Following from above and according to the definition of DTM, one can write the solution of Eq. (8) as

\[
f(\eta) = k_1 \eta + k_2 \eta^2 + \frac{1}{20} \left[\left(M^2 + \frac{1}{Da} \right) k_2 - 3R e k_1 \right] \eta^2 + \frac{1}{840} \left[\left(M^2 + \frac{1}{Da} \right) \left(M^2 + \frac{1}{Da} \right) k_2 - 3R e k_1 \right] \eta^2 + \left(9R e^2 k_2 + 12R e k_2^2 + 6R e^3 k_2 k_2 \right)
\]

\[
+ \frac{1}{60480} \left[\left(M^2 + \frac{1}{Da} \right) \left(M^2 + \frac{1}{Da} \right) \left(M^2 + \frac{1}{Da} \right) k_2 - 3R e k_1 \right] \left(9R e^2 k_2 + 12R e k_2^2 + 6R e^3 k_2 k_2 \right) \eta^2
\]

\[
- \left(27R e^3 k_2 + 108R e^2 k_2^2 + 54R e^3 k_2 k_2 + 48k_2 k_2 R e^2 + 48R e k_2 k_2^2 + 24R e^2 k_2 k_2^2 \right)
\]

\[
+ ...
\]
The unknown values of constants k_1 and k_2 can be found using Eq. (15) which states that at $f(1) = 1$, $f'(1) = 0$. Therefore, according to the boundary conditions, we have

\[
f(1) = k_1 + k_2 + \frac{1}{20} \left(\left(M^2 + \frac{1}{Da} \right) k_2 - 3Rek_i \right) + \frac{1}{840} \left\{ M^2 + \frac{1}{Da} \left(M^2 + \frac{1}{Da} \right) k_2 - 3Rek_i \right\} \\
+ \frac{1}{60480} \left\{ \left(M^2 + \frac{1}{Da} \right) \left(M^2 + \frac{1}{Da} \right) k_2 - 3Rek_i \right\} + \left(9Re^2 k_2 + 12Rek_2^2 + 6Re^2 k_1 k_2 \right) \\
+ \ldots = 1
\]

(21)

\[
f'(1) = k_1 + 3k_2 + \frac{1}{4} \left(\left(M^2 + \frac{1}{Da} \right) k_2 - 3Rek_i \right) + \frac{1}{120} \left\{ M^2 + \frac{1}{Da} \left(M^2 + \frac{1}{Da} \right) k_2 - 3Rek_i \right\} \\
+ \frac{1}{6720} \left\{ \left(M^2 + \frac{1}{Da} \right) \left(M^2 + \frac{1}{Da} \right) k_2 - 3Rek_i \right\} + \left(9Re^2 k_2 + 12Rek_2^2 + 6Re^2 k_1 k_2 \right) \\
+ \ldots = 0
\]

(22)

It should be noted that when Eq. (21) and (22) are solved, different values for k_1 and k_2 are gotten for respective values of α and Re.

In order to find the skin friction, the second-order derivatives of $f(1)$ at the wall is developed as

\[
f''(\eta) = 6k_2 \eta^3 + \left(\left(M^2 + \frac{1}{Da} \right) k_2 - 3Rek_i \right) + \frac{1}{20} \left\{ M^2 + \frac{1}{Da} \left(M^2 + \frac{1}{Da} \right) k_2 - 3Rek_i \right\} \\
+ \frac{1}{840} \left\{ \left(M^2 + \frac{1}{Da} \right) \left(M^2 + \frac{1}{Da} \right) k_2 - 3Rek_i \right\} + \left(9Re^2 k_2 + 12Rek_2^2 + 6Re^2 k_1 k_2 \right) \\
+ \ldots
\]

(23)

It should be noted that $Re = -\frac{SA(1-\phi)^2}{5}$

Judging from physical point of view, the skin friction is an important physical quantity of interest in the flow analysis of fluid.

The skin friction can be expressed as
Using the dimensionless variables in Eq. (7), we developed a non-dimensional form of Eq. (24) as
\[
C_f' = \frac{H^2}{x^2 (1-\alpha t) Re_C f} = A(1-\phi)^{2.5} f^*(1)
\]
which gives,
\[
C_f' = A(1-\phi)^{2.5} \left\{ 6k_2 + \left(\frac{M^2 + \frac{1}{Da}}{Da} \right) k_2 - 3 Re k_1 + \frac{1}{20} \left(M^2 + \frac{1}{Da} \right) \left(\frac{M^2 + \frac{1}{Da}}{Da} \right) k_2 - 3 Re k_1 \right\} \\
\quad + \frac{1}{840} \left(M^2 + \frac{1}{Da} \right) \left(\frac{M^2 + \frac{1}{Da}}{Da} \right) \left(\frac{M^2 + \frac{1}{Da}}{Da} \right) k_2 - 3 Re k_1 + \left(9 Re^k k_2 + 12 Re^k k_3 + 6 Re^k k_1 \right) \right\} + \ldots
\]
\[
(26)
\]
\[
4. Results and Discussion
\]
In order to establish the accuracy of the results of the applied approximate analytical method, the results are compared with the results of numerical method (NM) using fourth-fifth order Runge-Kutta-Fehlberg method as presented in Tables 3-5. The table shows the comparisons of results of DTM and NM for different values of permeation Reynolds and Hartmann numbers. Also, the Tables presented the various impacts of controlling flow parameters on the squeezing flow process. It is shown that during the separation flow, the velocity of the flow increases while the skin friction coefficient decreases. However, in the squeezing flow process, increase in the squeezing and Hartmann numbers cause the skin friction coefficient to decrease.

Table 3.
Results of NM and DTM for large squeezing number in the absence of magnetic field.

<table>
<thead>
<tr>
<th>(\phi)</th>
<th>Squeezing (S = 101)</th>
<th>(\phi = 0, 1/Da = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta)</td>
<td>NM</td>
<td>DTM</td>
</tr>
<tr>
<td>0.0</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.1</td>
<td>0.16377</td>
<td>0.16376</td>
</tr>
<tr>
<td>0.2</td>
<td>0.32193</td>
<td>0.32194</td>
</tr>
<tr>
<td>0.3</td>
<td>0.46995</td>
<td>0.46992</td>
</tr>
<tr>
<td>0.4</td>
<td>0.60424</td>
<td>0.60422</td>
</tr>
<tr>
<td>0.5</td>
<td>0.72190</td>
<td>0.72191</td>
</tr>
<tr>
<td>0.6</td>
<td>0.82063</td>
<td>0.82063</td>
</tr>
<tr>
<td>0.7</td>
<td>0.89871</td>
<td>0.89874</td>
</tr>
<tr>
<td>0.8</td>
<td>0.95498</td>
<td>0.95496</td>
</tr>
<tr>
<td>0.9</td>
<td>0.98878</td>
<td>0.98875</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
</tbody>
</table>
Table 4.
Results of NM and DTM of skin friction parameter for large separation number under the influence of magnetic field.

<table>
<thead>
<tr>
<th>η</th>
<th>f''(1) NM</th>
<th>f''(1) DTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.957</td>
<td>6.445</td>
<td>-4.78</td>
</tr>
<tr>
<td>18.638</td>
<td>6.103</td>
<td>-4.07</td>
</tr>
<tr>
<td>25.747</td>
<td>7.151</td>
<td>-4.11</td>
</tr>
<tr>
<td>41.818</td>
<td>11.419</td>
<td>-5.10</td>
</tr>
<tr>
<td>50.460</td>
<td>9.964</td>
<td>-4.16</td>
</tr>
<tr>
<td>62.485</td>
<td>11.077</td>
<td>-4.17</td>
</tr>
<tr>
<td>76.326</td>
<td>12.233</td>
<td>-4.18</td>
</tr>
</tbody>
</table>

Table 5.
Results of NM and DTM for small squeezing number in the absence of magnetic field.

<table>
<thead>
<tr>
<th>η</th>
<th>f NM</th>
<th>f DTM</th>
<th>Squeezing S = 0.5, M=0, l/Da=0</th>
<th>Squeezing S = 1.5, M=0, l/Da=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.2</td>
<td>0.31707</td>
<td>0.31705</td>
<td>0.31609</td>
<td>0.31607</td>
</tr>
<tr>
<td>0.4</td>
<td>0.59972</td>
<td>0.59971</td>
<td>0.59818</td>
<td>0.59820</td>
</tr>
<tr>
<td>0.6</td>
<td>0.81886</td>
<td>0.81884</td>
<td>0.8174</td>
<td>0.81743</td>
</tr>
<tr>
<td>0.8</td>
<td>0.95526</td>
<td>0.95525</td>
<td>0.95430</td>
<td>0.95432</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

Using nanoparticle parameter value of 0.15 i.e. \(\phi = 0.15 \), Figs. 2 and 3 show the variation of velocities of flow of the fluid over the length. As depicted in the figure, when the axial velocity of fluid flow near the wall region decreases, there is an increase in velocity gradient at the wall region. This behaviour occurs because of the conservativeness of the mass flow rate.

Impact of magnetic field parameter on the flow behaviour of the fluid is shown in Fig. 3. As the Hartmann number increases, the flow velocity decreases in the range of \(0 \leq \eta \leq 0.5 \) and then increases in the range \(0.5 < \eta \leq 1 \). This is due to the fact that the magnetic field created a retarding force, Lorentz force created which decreases the motion of the fluid at boundary layer.
during the squeezing flow process. During the separation of the plates, as the magnetic field parameter increases, the flow velocity of the fluid further decreases. Such a behaviour is caused by the fact that the fluid flow with high velocity to fill a vacant space that occurs such that the law of conservation of mass is not violated.

Fig. 4 displays the influence of Darcy number on the squeezing flow pattern of the nanofluid. As it is shown in the figure, there is an opposite trend to that of the squeezing number effects on the flow process. The figure shows that increase in the Darcy number causes the flow velocity to increase in the range of $0 \leq \eta \leq 0.5$ and a decrease is witness in the range $0.5 < \eta \leq 1$.

As it is illustrated in Fig. 5, the effects of squeezing number on the flow velocity is shown. As the squeezing number increases, there is a decrease in flow velocity in the range of $0 \leq \eta \leq 0.5$ and then increase in the flow velocity in the range $0.5 < \eta \leq 1$. Fig. 6 shows that impacts of nanoparticle fraction on the fluid velocity. It is shown that as the nanoparticle fraction increases, the velocity decreases in the range of $0 \leq \eta \leq 0.5$ and then increases in the range $0.5 < \eta \leq 1$. This
is because increase in the nanoparticle fraction leads to an increased more collisions between nanoparticle and particles at the boundary surface of the plates. Consequently, a retardation in the flow process occurs which decreases the flow velocity near the boundary layer.

![Fig. 5.](image1)

Fig. 5. Effects of Squeezing number on the flow velocity of the fluid.

![Fig. 6.](image2)

Fig. 6. Effects of nanoparticle fraction on the flow velocity of the fluid.

Table 6.
Skin friction for different squeezing, Hartmann and Darcy numbers.

<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>Da</th>
<th>C_f^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.957</td>
<td>4.340</td>
<td>0.475</td>
<td>-3.48</td>
</tr>
<tr>
<td>18.638</td>
<td>3.672</td>
<td>0.411</td>
<td>-2.96</td>
</tr>
<tr>
<td>25.747</td>
<td>3.587</td>
<td>0.390</td>
<td>-2.99</td>
</tr>
<tr>
<td>41.818</td>
<td>7.104</td>
<td>0.232</td>
<td>-3.71</td>
</tr>
<tr>
<td>50.460</td>
<td>6.236</td>
<td>0.268</td>
<td>-3.03</td>
</tr>
<tr>
<td>62.485</td>
<td>5.820</td>
<td>0.190</td>
<td>-3.03</td>
</tr>
<tr>
<td>76.326</td>
<td>6.444</td>
<td>0.173</td>
<td>-3.04</td>
</tr>
</tbody>
</table>
Numerical values for skin friction coefficient are presented in Table 6. The Table also presented the effects of squeezing (S), magnetic parameters (M) and Darcy (Da) on the skin coefficient. It is shown that the numerical value of the skin friction coefficient increases as the squeezing (S) and Hartmann (magnetic field, M) numbers increase, the skin-friction coefficient also increases while the skin-friction coefficient decreases as the Darcy number increases.

5. Conclusion

In this work, analysis of magnetohydrodynamic squeezing flow of nanofluid between two parallel plates embedded in a porous medium have been presented using differential transformation method. The accuracy of the results of the approximate analytical method was established numerically using fourth-fifth order Runge-Kutta-Fehlberg method. Parametric studies were carried out which established the impacts of the controlling flow parameter on the flow process. The present study will be useful in various industrial, biological and engineering applications.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(t)</td>
<td>Magnetic field strength</td>
</tr>
<tr>
<td>Da</td>
<td>Darcy number</td>
</tr>
<tr>
<td>H</td>
<td>Squeezing flow height</td>
</tr>
<tr>
<td>Kp</td>
<td>Permeability</td>
</tr>
<tr>
<td>M</td>
<td>Hartmann parameter</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
</tr>
<tr>
<td>py</td>
<td>yield stress of the fluid.</td>
</tr>
<tr>
<td>Re</td>
<td>Reynold number</td>
</tr>
<tr>
<td>s</td>
<td>Squeezing flow Parameter</td>
</tr>
<tr>
<td>U</td>
<td>velocity in x direction</td>
</tr>
<tr>
<td>V</td>
<td>velocity in y Direction</td>
</tr>
<tr>
<td>v</td>
<td>Dimensionless velocity in y direction</td>
</tr>
<tr>
<td>Vw</td>
<td>injection/suction velocity</td>
</tr>
<tr>
<td>x</td>
<td>horizontal axis of flow</td>
</tr>
<tr>
<td>y</td>
<td>Perpendicular axis to the flow</td>
</tr>
<tr>
<td>k_{nf}</td>
<td>Effective thermal conductivity</td>
</tr>
</tbody>
</table>

Greek Symbol

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mu_{nf}</td>
<td>Effective dynamic viscosity</td>
</tr>
<tr>
<td>\rho_{nf}</td>
<td>Effective density</td>
</tr>
<tr>
<td>\eta</td>
<td>Dimensionless similarity variable</td>
</tr>
<tr>
<td>\tau</td>
<td>shear stress</td>
</tr>
<tr>
<td>\tau_0</td>
<td>Casson yield stress</td>
</tr>
<tr>
<td>\mu</td>
<td>dynamic viscosity</td>
</tr>
<tr>
<td>\sigma</td>
<td>shear rate</td>
</tr>
<tr>
<td>\Phi</td>
<td>fraction of nanoparticle in nanofluid</td>
</tr>
</tbody>
</table>
References

