Azadi Kakavand, M., Khan Mohammadi, M. (2018). Seismic Fragility Assessment of Local and Global Failures in Low-rise Non-ductile Existing RC Buildings: Empirical Shear-Axial Modelling vs. ASCE/SEI 41 Approach. Journal of Computational Engineering and Physical Modeling, 1(1), 38-57. doi: 10.22115/cepm.2018.114549.1008
Mohammad Reza Azadi Kakavand; Mohammad Khan Mohammadi. "Seismic Fragility Assessment of Local and Global Failures in Low-rise Non-ductile Existing RC Buildings: Empirical Shear-Axial Modelling vs. ASCE/SEI 41 Approach". Journal of Computational Engineering and Physical Modeling, 1, 1, 2018, 38-57. doi: 10.22115/cepm.2018.114549.1008
Azadi Kakavand, M., Khan Mohammadi, M. (2018). 'Seismic Fragility Assessment of Local and Global Failures in Low-rise Non-ductile Existing RC Buildings: Empirical Shear-Axial Modelling vs. ASCE/SEI 41 Approach', Journal of Computational Engineering and Physical Modeling, 1(1), pp. 38-57. doi: 10.22115/cepm.2018.114549.1008
Azadi Kakavand, M., Khan Mohammadi, M. Seismic Fragility Assessment of Local and Global Failures in Low-rise Non-ductile Existing RC Buildings: Empirical Shear-Axial Modelling vs. ASCE/SEI 41 Approach. Journal of Computational Engineering and Physical Modeling, 2018; 1(1): 38-57. doi: 10.22115/cepm.2018.114549.1008
Seismic Fragility Assessment of Local and Global Failures in Low-rise Non-ductile Existing RC Buildings: Empirical Shear-Axial Modelling vs. ASCE/SEI 41 Approach
1Unit of Strength of Materials and Structural Analysis, Department of basic sciences in engineering sciences, University of Innsbruck, Innsbruck, Austria
2Faculty of Civil Engineering, University of Tehran, Tehran, Iran
Receive Date: 12 January 2018,
Revise Date: 17 March 2018,
Accept Date: 19 March 2018
Abstract
The brittle behavior of older non-ductile reinforced concrete buildings such as shear-axial failure in columns can cause lateral instability or gravity collapse. Hence, the attempt is to assess the collapse potential through fragility curves. Current research focuses on fragility assessment of these buildings emphasizing on shear-axial failure using two well-established methods; empirical limit state material versus ASCE/SEI 41-13 recommendations. To this aim, two 2D reinforced concrete models (3 and 5-story) according to typical detail of existing buildings in Iran were modeled using two aforementioned modeling approaches and analyzed under monotonic analysis and incremental dynamic analysis (IDA). In the following, seismic fragility assessment were carried out by means of obtained results from IDA. The results of fragility curves showed that, collapse capacity of buildings modelled by ASCE/SEI 41-13 are more than empirical method and fewer cases can pass the level of safety probability of failure suggested by ASCE/SEI-41.
Fig. 1. Schematic scheme of the tested frame MUFS (Yavari et al., 2008) [13].
Fig. 2. Schematic presentation of the frame model.
Fig. 3. The comparison of numerical and experimental models via Non-linear time history analysis.
Fig. 4. Elevation view and structural details of case study frames.
Fig. 5. Schematic presentation of 3 and 5 story models.
Fig. 6. Shear Force Vs. Rotation of the joints for the model with P/Ag.f'c =0.12 (ASCE/SEI 41).
Fig. 7. Shear Force Vs. Rotation curves for the columns in 3 story frame according to the variation of initial axial load ratios (ASCE/SEI 41-13).
Fig. 8. Base shear - Roof drift plot due to non-linear pushover analysis in: a) 3-Story models and b) 5-Story models.
Fig. 9. Axial Load – Vertical Disp. plot due to non-linear pushover analysis in 3-Story model: a) the first axial failure in column, b) the first axial failure in floor.
Fig. 10. The Sa(g) of applied records Vs. time period.
Fig. 11. Sa (g) Vs. Maximum Inter-story drift ratio for 3-Story model with P/Ag.f’c =0.12, S=200 mm. a) ASCE/SEI 41-13 modelling approach, b) shear and axial springs modelling approach.
Fig.12. Sa (g) Vs. Maximum Inter-story drift ratio for 5-Story model with P/Ag.f’c =0.12, S=200mm. a) ASCE/SEI 41-13 modelling approach, b) shear and axial springs modelling approach.
Fig. 13. Axial load versus time in 3-Story model, a) in a column suffered axial failure, b) in the floor including the column which suffered axial failure.
Fig. 14. Seismic fragility curves of shear and axial failure for 3 story models, a) probability of first shear failure, b) probability of first axial failure.
Fig. 15. Seismic fragility curve of shear and axial failure for 5-story models, a) probability first shear failure, b) probability first axial failure.
References
[1] R. Allahvirdizadeh, M. A. Mohammadi, Upgrading Equivalent Static Method of Seismic Designs to Performance-Based Procedure, Earthquakes and Structures 10(4), 2016, 849-865.
[2] R. Allahvirdizadeh, M. Khanmohammadi, M. S. Marefat, Probabilistic Comparative Investigation on Introduced Performance-Based Seismic Design and Assessment Criteria”, Engineering Structures151, 2017, 206-220.
[3] S. Shafaei, A. Ayazi, F. Farahbod, The effect of concrete panel thickness upon composite steel plate shear walls. Journal of Constructional Steel Research 117, 2016, 81–90.
[4] B. Rassouli, S. Shafaei, A. Ayazi, F. Farahbod, Experimental and numerical study on steel-concrete composite shear wall using light-weight concrete. Journal of Constructional Steel Research 126, 2016, 117–128.
[5] A. Ayazi, H. Ahmadi, S. Shafaei, The effects of bolt spacing on composite shear wall behavior. World Academy of Science, Engineering and Technology, International Journal of Civil and Environmental Engineering 6(10), 2012, 882–889.
[6] S. Shafaei, F. Farahbod, A. Ayazi, Concrete Stiffened Steel Plate Shear Walls with an Unstiffened Opening. Structures 12, 2017, 40–53.
[7] S. Shafaei, F. Farahbod, A. Ayazi, The wall–frame and the steel–concrete interactions in composite shear walls. The Structural Design Tall Special Buildings, 2018;e1476.
[8] K. J. Elwood, Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames, Ph.D. Thesis, Civil Engineering Department, University of California, Berkeley, California, 2003.
[9] Elwood K.J, Moehle J.P, Evaluation of existing reinforced concrete columns, The 13th World Conference on Earthquake Engineering, Vancouver, B.C, Canada; 2004.
[10] K. J. Elwood, Modelling failures in existing reinforced concrete columns, The Canadian Journal of Civil Engineering 31(5), 2004, 846-859.
[11] K. J. Elwood, J. P. Moehle, Dynamic shear and axial-load failure of reinforced concrete columns, The ASCE Journal of Structural Engineering 134(7), 2008, 1189-1198.
[12] Kabeyasawa T, Kim Y, Progressive Collapse Simulation of Reinforced Concrete Buildings Using Column models with strength deterioration after yielding, ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures, San Francisco, California, USA; 2009.
[13] Yavari S, Elwood K.J. and et al., Study on collapse of flexure-shear-critical reinforced concrete frames, The 14th World Conference on Earthquake Engineering, Beijing, China; 2008.
[14] S. Yavari, K. J. Elwood and et al., Collapse of a nonductile concrete frame: Evaluation of analytical models, The Journal of Earthquake Engineering & Structural Dynamics 38(2), 2008, 225-241.
[15] Mosalam, K.M, Talaat, M, Park S, Modelling Progressive Collapse in Reinforced Concrete Framed Structures, The 14th World Conference on Earthquake Engineering, Beijing, China; 2008.
[16] C. L. Wu, W. W. Kuo, Collapse of a nonductile concrete frame: Shaking table tests, The Journal of Earthquake Engineering & Structural Dynamics 38(2), 2008, 205-224.
[17] Matamoros A, Matchulat L and et al., Axial load failure of shear critical columns subjected to high levels of axial load, The 14th World Conference on Earthquake Engineering, Beijing, China; 2008.
[18] T. Nakamura, M. Yoshimura, Gravity load collapse of reinforced concrete columns with brittle failure modes,” Journal of Asian Architecture and Building Engineering 1(1), 2002, 21-27.
[19] Nakamura T, Yoshimura M, Simulation of Old Reinforced Concrete Column Collapse by Pseudo-dynamic Test Method, The 13th World Conference on Earthquake Engineering, Lisbon, Portugal; 2012.
[20] H. Mostafaei, F. J. Vecchio, T. Kabeyasawa, Nonlinear displacement-based response prediction of reinforced concrete columns, Engineering Structures 30(9), 2008, 2436–2447.
[21] H. Mostafaei, F. J. Vecchio, Uniaxial shear-flexure model for reinforced concrete elements, The Journal of Structural Engineering 134(9), 2008, 1538-1547.
[22] H. Mostafaei, F. J. Vecchio, and et al., Deformation capacity of reinforced concrete columns, American Society Institute Structural Journal 106(2), 2009, 187-195.
[23] Murray J. A, Sasani M, Evaluating system-level collapse resistance of non-ductile RC frames structures, The 10th U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering, Anchorage, Alaska; 2014.
[24] J. A. Murray, M. Sasani, Seismic shear-axial failure of reinforced concrete columns vs. system level structural collapse,” the journal of Engineering Failure Analysis 32, 2013, 382-401.
[25] K. Henkhaus, S. Pujol and et al., Axial Failure of Reinforced Concrete Columns Damaged by Shear Reversals, The Journal of Structural Engineering 139(1), 2013, 1172-1180.
[26] K. Henkhaus, Axial failure of vulnerable reinforced concrete columns damaged by shear reversals, Ph.D. thesis, Civil Engineering Dept., Purdue University, Indiana; 2010.
[27] M. Sasani, Shear strength and deformation capacity models for RC columns, The 13th World Conference on Earthquake Engineering, Vancouver, B.C, Canada; 2004.
[28] N. Kyriakides, A. Sohaib, K. Pilakoutas, K. Neocleous, C. Chrysostomou, E. Tantele and R. Votsis, Evaluation of seismic demand for substandard reinforced concrete structures. The Open Construction and Building Technology Journal, 12(1), 2018.
[29] R. Allahvirdizadeh, Y. Gholipour, Reliability Evaluation of Predicted Structural Performances Using Nonlinear Static Analysis, Bulletin of Earthquake Engineering 15(5), 2017, 2129-2148.
[30] M. R. Azadi Kakavand, Limit State Material Manual, Available on www.opensees.berkeley.edu, University of California, Berkeley, California; 2012.
[31] Open System for Earthquake Engineering Simulation. Pacific Earthquake Engineering Research Centre, University of California, Berkeley. Available from: www.opensees.berkeley.edu; 2010.
[32] M. R. Azadi Kakavand, R. Allahvirdizadeh, Enhanced Drift Capacity Predicting Models for Less Ductile RC Columns with Shear or Axial Failure Modes. Manuscript under revision, 2018.
[33] K.J. Elwood and et al., Update to ASCE/SEI 41 Concrete Provisions; 2010.
[34] ASCE 41-13., Publication Anticipated Seismic Evaluation and Upgrade of Existing Buildings, American Society of Civil Engineers, Reston, Virginia; 2013.
[35] N. C. Kyriakides, S. J. Pantazopoulou, Collapse fragility curves for RC buildings exhibiting brittle failure modes. Journal of Structural Engineering, 144(2), 2017.
[36] N. Kyriakides, A. Sohaib, K. Kypros, K. Kyriacos, and C. Chrysostomou, A probabilistic analytical seismic vulnerability assessment framework for substandard structures in developing countries. Earthquakes and Structures 6(6), 2014, 665-687.
[37] S. Ahmad, N. Kyriakides, K. Pilakoutas, K. Neocleous and Q. Zaman, Seismic fragility assessment of existing sub-standard low strength reinforced concrete structures. Earthquake Engineering and Engineering Vibration 14(3), 2015, 439-452.
[38] P.H. Galanis, J. P. Moehle, Development of collapse indicators for older-type reinforced concrete buildings, The 15th World Conference on Earthquake Engineering, Lisbon, Portugal; 2012.
[39] M. Baradaran Shoraka, T. Y. Yang and et al., Seismic loss estimation of non-ductile reinforced concrete buildings, The Journal of Earthquake engineering & structural dynamics 42(2), 2013, 297-310.
[40] H. Farahmand, M.R. Azadi Kakavand and et al., The effect of mechanical and geometric parameters on the shear and axial failures of columns in reinforced concrete frames, The Journal of Ciencia & Natura 37(1), 2015, 247-259.
[41] S. Yavari, K. J. Elwood, C. Wu, S. Lin, S. Hwang, J. P. Moehle, Shaking table tests on reinforced concrete frames without seismic detailing, ACI Structural Journal 110(6), 2013, 1001-1012.
[42] K. J. Elwood, M. O. Eberhard, Effective Stiffness of Reinforced Concrete Columns, ACI Structural Journal 106(4), 2009, 476-484.
[43] M. R. Azadi Kakavand. M. Neuner, M. Schreter, G. Hofstetter, A 3D continuum FE-model for predicting the nonlinear response and failure modes of RC frames in pushover analyses. Manuscript under revision, 2018.
[44] Quantification of Building Seismic Performance Factors (FEMA) P695, U.S Department of Homeland Security; 2009.