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The manufacturing industry widely employs concrete and 

steel as building materials. These materials can be cleverly 

combined to create an efficient and innovative system, 

commonly referred to as a composite system. Despite the 

advantages and high performance of circular concrete filled 

steel tube (CCFST), there is a lack of reliable and accurate 

relationships for estimating their ultimate capacity. To 

address this issue, a wide range of valid experimental tests 

have been collected as a reference for actual data. By 

utilizing intelligent systems, such as artificial neural 

networks (ANN), the data can be effectively used to estimate 

the ultimate capacity of CCFST columns. Selecting the 

appropriate algorithm is critical for ANNs to eliminate 

unnecessary errors and produce optimal outputs. This study 

proposes a relation created by ANN to determine the 

ultimate capacity of CCFST columns and assesses its 

accuracy. Finally, a comparison with existing formulas has 

been conducted. The proposed network introduced enough 

accuracy compare to other existing methods. 
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1. Introduction 

Choosing the appropriate materials for a structure is a critical decision for structural designers 

today. This decision is influenced by various factors such as the type and application of the 

structure, its economics, and its strength. Among the commonly used construction materials, 

concrete and steel are prevalent. Their combination through a composite system provides an 

effective and efficient solution. Composite columns that utilize concrete and steel together are 

increasingly popular worldwide due to their ability to cooperate and enhance structural systems. 

CFST columns are a specific type of composite column that combine steel and concrete in 

various cross-sectional shapes. Two primary types of composite columns (illustrated in Figure 1) 

are the concrete-filled steel tube (CFST) and the steel reinforcement concrete column. The 

former utilizes a steel hollow section filled with concrete, while the latter embeds or encases a 

steel section in concrete [1–4]. The steel part of the column is circular, square, and rectangular, in 

the core of which concreting is done. Also, for the type of column concrete, self-compacting 

concrete or ordinary concrete is used. The combination columns have better structural 

performance than steel or reinforced concrete structural columns. Interaction between concrete 

and steel tube is one of the most important parameters that influenced the performance of 

composite columns. Although extensive studies were carried out on the axial strength of the 

concrete-filled steel tube (CFST) columns, it is not well known. Now, the designers of such 

structures will need comprehensive and accurate information from researchers, so using high-

accuracy results is very important. To achieve accurate structural data in research, different 

laboratory devices will be needed, only materials, manpower assistance, etc. will be needed. 

Therefore, in such structural research, we will deal with cases that are costly and we will also 

face many problems. But with the help of appropriate research methods and tools, the desired 

result can be achieved with the least cost and these problems can be overcome. One of these 

suitable methods is the intelligent systems method, which is one of the most popular and most 

practical of these structures, Artificial neural networks (ANN), whose role in solving the 

problems of today's world cannot be overlooked [5–25]. 

  
Fig. 1. Cross-section configuration in composite members. 
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2. Research significance 

According to a series of studies, the ultimate axial strength assessment of CCFST columns is a 

vital issue in design and strengthening of structures. There is a limited available equation that are 

able evaluate the ultimate strength such members accurately. Consequently, the primary objective 

of the present study is to construct soft-computing models based on ANN to establish equations 

for estimating the ultimate strength of CCFST columns that are more precise than the equations 

now in use. A dependable database is required for this objective. The given database [26–32] was 

utilized for training and testing the developed model based on the ANN technique. A portion of 

192 sample records were utilized for generating the network. 

3. Methods 

3.1. Artificial neural networks 

Looking back in time, the origins of neural networks may seem recent, but in reality, they existed 

long before computers. Artificial neural networks (ANNs) are tools for processing information, 

inspired by biological nervous systems like the human brain. The defining characteristic of 

ANNs is their unique structure, consisting of numerous interconnected processing units known 

as neurons that work together to solve specific problems. Like humans, ANNs learn by example 

and are trained for specific applications such as pattern recognition or data classification. Just as 

biological systems adjust synaptic connections between neurons, ANNs also undergo a learning 

process. Due to their ability to model real-valued, discrete-valued, and vector-valued functions 

from examples, ANNs have been widely adopted in various engineering applications 

[5,6,17,19,20]. 

The ANN model is a computational tool that mimics the structure of biological neurons, which 

comprise dendrites, cell bodies, and axons. Each neuron receives information from previous 

neurons through dendrites and transfers processed information to the next neuron through axons. 

The design process for neural networks involves five key steps: creating the network, 

configuring the network, initializing weights and biases, training the network, and validating the 

network [7–15,20,22–24]. 

4. Results 

4.1. Network modeling 

Artificial neural networks (ANNs) modify their architecture during the learning process, utilizing 

internal or external data to construct models of intricate input-output relationships. By the links 

that process the input data, the desired output can be generated. The artificial neural network 

algorithms create coordination between the variables and in the network training stage it is 

adapted based on matching and matching between the input and the target until the network 

output and our desired output are matched, so the extent Laboratory data is very necessary. In 

various types of ANN algorithms, the process of network creation, network training, and network 

simulation is usually performed. In this research, four processes of laboratory data collection, 
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creating a suitable network, network training, and simulation will be used to use ANNs. To create 

an efficient network, 192 samples of experimental tests, which include the dimensions and 

mechanical characteristics of the section and the ultimate capacity, are from the authoritative 

articles of O’Shea [26], Yu Z [27], Gupta [28], Giakoumelis [29], Abed [30] , Yu Q [31], 

Ellobody [32], has been extracted and collected. All of these columns are stub and buckling does 

not occur in them. The maximum axial compressive-capacity of CCFST columns is determined 

by several parameters as per the researchers' models, including: 

Tensile yield stress of the steel tube (fy) measured in MPa 

Compressive strength of unconfined concrete (f'c) measured in MPa 

Length of the column (L) measured in mm 

Wall thickness of the steel tube (t) measured in mm 

Outer diameter of the column (D) measured in mm 

The 5 parameters together with the D/t ratio form a total of 6 network input nodes, and also the 

experimental ultimate capacity of the columns is specified as the target vector. It should be noted 

that the 6 input nodes of the network form a 192×6 matrix and the target vector forms a 192×1 

matrix. The modeling algorithm utilized in this study is the post-diffusion network, which 

operates by decreasing the slope of the performance function through weight adjustments in the 

opposite direction. This network consists of multiple layers and utilizes the Wiedro-Hoff learning 

rule with a nonlinear transfer function. The term post-diffusion refers to the network behavior in 

calculating the slope in multilayer nonlinear networks. The transfer functions for these networks 

are sigmoidal logarithm and the transfer function in the output layer is linear. Using this method, 

due to the bias of a sigmoid layer and a linear output layer, it is possible to estimate any function 

with finite discontinuities. Well-trained post-broadcast networks tend to respond with high 

accuracy when dealing with input data they have not seen before. In the simplest post-diffusion 

learning implementation, weights and biases are updated in the direction that the performance 

function decreases, that is, against its slope. A repetition of this process can be written as follows. 

xk + 1 = xk- ak gk (1) 

The vector xk represents the current weights and biases, while gk denotes the current slope and ak 

represents the learning rate. Neural networks composed of multiple layers of neurons with 

nonlinear transmission functions enable the system to learn both linear and nonlinear 

relationships between inputs and outputs. As shown in (Fig. 2), a tansig-purelin bilayer network 

is shown. 

 

Fig. 2. A two-layer post-release network. 
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Input vectors and target vectors are divided into three sets of training, validation set, and network 

test set. Changing the percentage ratio of these sets will have a small effect on the network 

learning process. In this study, the selected relative percentage of these sets is 70% of the data 

allocated to education, 15% of the data to accuracy, and 15% of the data to testing. Choosing the 

right number of layers and neurons is very important and can affect the quality of the network. 

To increase the efficiency of the network, data must be written in the continuation of the process. 

Here there are 6 input data and one output data and each data is written with a mapping to the 

interval [-1 1] and after training the network, the results can be converted to real data by inverse 

mapping. To select the optimal number of neurons, the number of these neurons is changed 

between 3 and 15, and the 13 networks produced are tested. To teach all networks, the post-

publication method and Levenberg-Marquardt algorithm have been used, and after training the 

networks, the most optimal network should be selected. The performance of the 13 networks was 

assessed based on two criteria. The first criterion is the mean square error (MSE), which is the 

average square difference between the target and the output values. The training was stopped 

when the MSE reached a sufficiently low value, indicating good network performance. The 

second criterion is the regression value (R) of the networks, which measures the correlation 

between the target and the output. A value of R = 1 represents complete correlation, while a 

value of R = 0 indicates a random relationship. There are two criteria of regression and mean 

square error as two acceptable principles for selecting the best network. A very important 

criterion in selecting the appropriate network is the mean square error, which is the value for 

networks with 3 to 15 neurons in the hidden layer for training, validation, testing, and data sets in 

the (Fig. 3) it has been shown 

 
Fig. 3. Network efficiency changes with increasing repetitions (Epochs). 

From the above diagram, it is clear that by increasing the number of neurons, the training data 

error decreases. Because as the number of neurons increases, the degrees of freedom increase, 

and the network can achieve fewer errors. But because the network focuses on reducing training 
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data error, overfitting occurs, and test data error increases. It is well known that most networks 

have an error of less than 0.002, which proves that the networks are well trained and the error 

rates are small. The highest network error with 9 and 10 neurons is hidden in the layer and the 

lowest network error with 6 and 12 neurons. According to the mean square error diagram, we 

select a network with 12 neurons and it is appropriate. With this number of neurons, the network 

is trained and the changes in network efficiency are in the form of (Fig. 4), which is clear to have 

reached a very small amount. The correlation coefficient and correlation diagram for test, 

training, validation data, and total data are shown in (Fig. 5). 

 

Fig. 4. Changes in the sum of error squares with different lattice neurons in the hidden layer. 

 

Fig. 5. Data correlation diagram for a monolayer network with 12 neurons. 
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Upon reviewing Figure 6, it is evident that the correlation coefficients of the network for the 

training, validation, and test data are 0.99811, 0.99743, and 0.99606, respectively. These values 

indicate that the correlation coefficient is greater than 0.99 in all cases, which is highly favorable. 

Figure 7 compares the output of the network for the training, validation, and test data with the 

experimental data, demonstrating a strong agreement between the two. Additionally, Figure 7 

displays the data error, which confirms that the errors are negligible. 

 
Fig. 6. Single-layer network output with 12 neurons for training, validation, and testing data. 

 

Fig. 7. The error of training data, validation, and testing. 
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5. Discussion 

5.1. Ultimate capacity assessment of the CCFST columns using ANN 
There is now a neural network that, with the input of the column parameters, predicts its ultimate 

capacity with great accuracy, but the use of the network is tedious. In this section, we try to 

provide an analytical relationship for ultimate capacity predicting using ANN results. Based on 

this, it was decided to use the model suggested by Leung [33]. First, it was assumed that the area 

of change of the 5 main parameters is as shown in Table (1). 

Table 1 

Area of change of 5 input parameters. 
 

fy (MPa) fc (MPa) L (mm) t (mm) D (mm) 

Max 
185.5 22.6 250 0.86 47 

Min 
525 110 1080 11.9 360 

 

The following is a set of reference data approximately around the average of this data as shown 

in Table (2): 

Table 2 

Reference data. 

fy (MPa) fc (MPa) L (mm) t (mm) D (mm) 

318.781 106.788 506.846 1.8830 228.829 

 

Now to present the analytical relation, we have to enter the cross-section changes, the thickness 

of the steel layer as well as the yield stress of steel and concrete in the equation. For this purpose, 

a relation as the following was presented: 

PEquation = CD CL CT Cfc Cfy PSimulation (2) 

The coefficients of this relationship must be determined in such a way that changes in other 

parameters can be included in the ultimate capacity assessment. The process of finding these 

coefficients is that, as an example, we fix all the parameters to reference values and change the D 

parameter. For the input parameters, we obtain the network output and by dividing it by the 

stored value of the network output, we obtain the value of this coefficient. By performing this 

procedure for the L parameter, changes in this coefficient are obtained as shown in Fig. 8. 

It is known that with changes in the L parameter, the compressive strength of the column can 

change between 0.7 and 2.5. If the value of L/Lo is equal to 1, the value of this parameter is equal 

to the reference value and the coefficient is equal to 1. To be able to mathematically model the 

obtained diagram, we use the fit of a polynomial to it and increase the order of the polynomials 

so that a good result is obtained. By fitting a 3
rd

 order curve to Fig. 9, and Fig. 10 is obtained as 

follows: 
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Fig. 8. CL parameter changes. 

 
Fig. 9. CL parameter changes with fitted curve output. 

 
Fig. 10. CD parameter changes with fitted curve output. 
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Fig. 11. Changes in the Cfy parameter with the output of the fitted curve. 

 

Fig. 12. Changes in the Cfc parameter with the output of the fitted curve. 

 

Fig. 13. Changes in the Ct parameter with the output of the fitted curve. 
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Now obtain the changes of the parameters of the reference data on the output and fit a 3
rd

-degree 

polynomial to it and the results are obtained as (Figs. 11-13). After plotting the fitted curve 

diagrams, the coefficients are obtained as shown in Table 3. 

Table 3 

The resulting coefficients of the fitted curve. 

- 0.8718 3.2727 - 2.0991 0.6791 CL 

1.2709 - 0.6396 0.4574 - 0.1075 CD 

0.7083 0.0801 0.2361 -0.0426 Ct 

0.3034 0.8368 - 0.1318 - 0.0108 Cfc 

- 0.0420 4.2939 - 7.0833 3.8576 Cfy 

 

Finally, by fitting the 3
rd

 order curve to the diagrams (9), (10), (11), (12), (13) and according to 

the coefficients produced in Table 3, the governing equations are obtained as follows: 

𝐶𝐿 =  0.6791( 𝐿/𝐿0 )3 − 2.0991( 𝐿/𝐿0 )
2 + 3.2727( 𝐿/𝐿0 ) − 0.8918 (3) 

𝐶𝐷 =  −0.1075( 𝐷/𝐷0 )
3 + 0.4574( 𝐷/𝐷0 )

2 − 0.6396( 𝐷/𝐷0 ) + 1.2709 (4) 

𝐶𝑡 =  −0.0426( 𝑡/𝑡0 )3 + 0.2361( 𝑡/𝑡0 )2 + 0.0801( 𝑡/𝑡0 ) + 0.7083 (5) 

𝐶𝑓𝑐 =  −0.0108( 𝑓𝑐/𝑓𝑐0 )3 − 0.1318( 𝑓𝑐/𝑓𝑐0 )2 + 0.8368( 𝑓𝑐/𝑓𝑐0 ) + 0.3034 (6) 

𝐶𝑓𝑦 =  3.8576( 𝑓𝑦/𝑓𝑦0 )3 − 7.0833( 𝑓𝑦/𝑓𝑦0 )2 + 4.2939( 𝑓𝑦/𝑓𝑦0 ) − 0.0420 (7) 

5.2. Validation 

To validate the developed network and the proposed equation, a comparison between the 

aforementioned algorithms and experimental values was made and the results was tabulated in 

Figs. 14 and 15. 

 
Fig. 14. Comparison of the developed network vs. the experimental values. 
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Fig. 15. Comparison of developed formula vs. the experimental values. 

Using Equation (8), we can obtain the error rate for the network and the proposed relation. The 

mean error difference is the sum of the mean error that can be seen in the two Figs (14) and (15) 

based on experimental tests. 

Err = ((|Nm-Nexp|)/Nexp) ×100 (8) 

where Err is error percentage; Nm is the ultimate capacity of the models and Nexp is the actual 

ultimate capacity of the columns. The average error rate of the proposed network-based model 

according to 192 experimental data is equal to 95.4% and the average error of the proposed 

relationship is 10.45%, 63 of the data with an error of less than 4%, and 100 cases predict with 

an error of less than 10%, which means that the proposed relationship predicts 52% of the data 

with an error below 10% and is highly desirable. Therefore, the proposed equation can predict 

the axial compressive capacity of the CCFST column with appropriate accuracy. 

5.3. Equations compared to existing ones 

Figs. 16 and 17 show the strengths and proficiency of the proposed models as well as proposed 

by Eurocode 4 and AISC 2010. Figs. 16 and 17 allow us to draw the conclusion that the offered 

formulas, which are based on the ANN model, have a precise accuracy. The generated formulae 

may produce the most accurate results among others because the same samples were used. 

However, the offered equations show the highest precision during testing since the utilized 

samples were not taken into account when formulas were developed. Given this, the suggested 

formulas may provide an accurate and useful evaluation of the ultimate strength of CCFST 

columns. 
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Fig. 16. Comparison of existing codes provisions vs. the experimental values. 

 
Fig. 17. Comparison of existing codes provisions vs. the experimental values. 

6. Conclusions 

The study referred to above led to the following conclusions: 

1- It is very important to use a large number of laboratory data, of which a total of 192 column 

samples are considered. Because ANN algorithms create coordination between variables, and in 

the network training phase, it is adapted based on the match between input and output, until the 

desired output is matched. Therefore, the breadth of data plays an important role. 

2- The network used in this research for education is the post-publication network. The ability of 

the algorithms of this network to reduce the total square of errors in each iteration is desirable 

and is the fastest training algorithm for neural networks. 
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 3- To select the optimal neuron, change the number of neurons between 3 and 15 neurons and 

measure the 13 networks created based on the maximum regression close to 1 and the minimum 

square mean error close to zero, and the best network with 12 We select the neurons. 

4- The output of the network with 12 neurons and based on 192 laboratory data for training, 

validation and testing data is very consistent with the output of laboratory data and the number of 

correlations is 0.99811, 0.99743, and 0.99606, respectively. It is clear that this correlation 

coefficient is higher than 0.99 for all cases and is very suitable. 

5- Using the neural network results and based on the proposed Leung model [10], the proposed 

relation for the final axial load capacity of the CCFST column was proposed and validated. Also, 

the average error rate of the proposed model based on the network according to 192 basic 

laboratory data is equal to 95.4% and the average error of the proposed relationship is 10.45%, 

which is 63 cases of data with an error of less than 4%. And predicts 100 items with an error of 

less than 10%, which means that the proposed relationship predicts 52% of the data with an error 

of less than 10% and is highly desirable. Therefore, the proposed equation can obtain the axial 

bearing capacity of CCFST columns with very appropriate accuracy. 
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