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Piezoelectric vibration-based energy harvesters (PVEHs) are 

designed to convert mechanical energy into electric energy. 

Researchers deal with issues like inefficient amount of energy and 

frequency bandwidth. Optimizing and widening the PVEH can 

address the issues. As a modification to the dynamic magnification 

concept of conventional PVEH, a novel integrated oscillatory 

multisystem of cantilever-oscillator-spring is proposed. In this 

project maximizing the widened effective frequency bandwidth 

with respect to the oscillator mass and spring constant is the main 

goal. The closed-form voltage function obtained numerically-

analytically is expensive in terms of computational time and cannot 

be used in the genetic optimization. In this regard, soft computing 

techniques is adopted. Utilizing adaptive-neuro-fuzzy-inference-

system (ANFIS), a regressor model is designed to estimate voltage 

function evaluations in the genetic optimization, such fuzzy system 

is tuned with decent type and number of membership functions 

according to the root-mean-square-error criteria. Fuzzy inference 

system (FIS) is implemented using 64 and 49 fuzzy rules derived 

from Gaussian membership functions (MFs) and passed to the 

genetic algorithm initiating with 100 iterations and 30 populations. 

Using roulette wheel, tournament, and random selection methods, 

optimal values of the mass and stiffness ratios are found to yield 

the most widened frequency bandwidth. Findings reveal integration 

of the proposed oscillator-spring subsystem drastically reinforces 

utmost generated voltage. Furthermore, tuning parameters result 

the maximum widened frequency bandwidth which improves the 

harvester performance up to 3 times the conventional values. 
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1. Introduction 

Scavenging electrical energy from mechanical vibrations has been a trending research topic in 

recent years. Mechanical vibration energy is ubiquitous, free and clean. Adopting a proper 

transduction mechanism, one can generate free electric energy from any resource in oscillation. 

Doing so has mainly two benefits: the financial outcomes and the environmental preservation. 

Such idea is specifically important for integration of energy harvester modules with internet of 

thing (IoT) devices, micro-electro-mechanical-system, wireless sensor networks (WSNs), and 

RFID system; to form self-powered electro-mechanical systems [1]. Deleting the requirement of 

battery is one of the attractive goals as the need for replacement, labor cost, and environmental 

waste will all be obviated. Thus, piezoelectric vibration-based energy harvesters (PVEH) as one 

of the common energy modules have been studied deeply in the past decade. Such investigation 

encompasses structural modeling and analysis, along with material improvement. However, most 

of the current research articles focus on the devising novel models and vibratory response 

improvement. This is arisen from the vitality of matching the resonance frequency with driving 

(excitation) frequency coming from the external source, otherwise the amount of the generated 

energy is insignificant even with slight deviations from the resonance frequency. Another 

incentive to develop dynamical analysis and modeling is because of the effective (operational) 

frequency bandwidth. Similar to the frequency match, PVEH are effective enough only if the 

operational frequency bandwidth is widened. Mostly, widening the bandwidth and matching the 

resonance frequency are accommodated coextensively. To address such issues, tuning mass 

integration has been studied with great benefits. Tuning mass attached at the tip end of the 

cantilever decreases the cantilever resonance frequency. This point is specifically important since 

the resonance frequency of energy harvester substrates are mostly inaccessible. This particularly 

happens with small-scale and meso-scale systems where due to the size reduction; vibration 

modes take place usually at high numbers. On the opposite side, it is mostly hard to have high 

frequency values coming from external sources. Thus, decreasing the resonance frequency of the 

substrate by means of tuning masses improves the efficacy. Dynamic magnifiers introduce 

another development due to the active inertia of the magnifiers. In such systems, the effective 

frequency bandwidth is also widened. Such widening remarkably reinforces the successful and 

meaningful application of PVEH [2–5]. Naseer et al. [6] conducted a research to analyze the 

PVEH undergoing the vortex phenomena, where vibrations is generated due to the vortex of 

fluidics. Nonlinear analysis of energy harvesters using the harmonic balance approach is reported 

by Zhou et al. [7]. Harmonic balance is mainly a semi-analytical method to study the nonlinear 

oscillations from dynamic and frequency response curve aspect. Fan et al. [8] devised 

magnetically attractive coupling and stoppers to develop the efficacy of PVEH exposed to low-

frequency excitations. The importance of magnet mass and the gap between the cantilever and 

the magnets are highlighted. Such parameters as the optimal design factors are helpful to 

optimize the energy harvester. Staaf et al. [9] designed a sliding tuning mass mechanism to 

enhance the effective frequency bandwidth. They noticed functionality of such a system in 

wireless sensor networks particularly under random (stochastic) excitations. Asthana et al. [10] 

improved energy harvesters in terms of operational (effective) frequency bandwidth. They used 

finite element method for the structural analysis part. 
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One of the remarkable issues with conventional energy harvesters refers to the narrow 

operational bandwidth at the vicinity of the resonance frequency. This means that with slight 

deviations of the excitation (driving) frequency from the resonance frequency, the harnessed 

voltage (as well as the harnessed electrical power) is drastically reduced. This challenging point 

results in deficiency of the energy harvesters. To address such a deficit, dynamic magnifiers are 

proposed. In other words, to further optimize the performance of a piezoelectric vibration-based 

energy harvester (PVEH), dynamic magnifiers have been utilized widely. Zhang et al. [11] 

studied the PVEH with constituents of advanced composites considering nonlinearities resulted 

from restoring force effects and magnetic forces in the field. In this research essay, harmonic 

balance method is adopted to find the semi-analytical response of the energy harvester with 

elaborations on the frequency response curves. Aladwani et al. [4] proposed a new type of 

configuration including cantilever beams which enables us to dynamically magnify the amount 

of harvestable energy. In this model, the rigid clamp supports of a beam are replaced with 

translational and rotational springs, along with holding two inertias at the two ends. Aladwani et 

al. [12] and Tang and Wang [13] extended the mentioned model and reported the significant 

widened operational frequency bandwidth whenever the dynamic magnifiers are employed 

including the eccentricity effects. Tang and Wang [3] investigated the size effects of the dynamic 

magnifiers at the tip ends. They considered the eccentricities of the tuning masses placed at the 

two ends and found the optimal eccentricities. Jia and Seshia [14] reported the experimental 

setup to find the optimal tuning mass value against the mass of the cantilever. Numerical results 

are also verified and validated with experimental results. Dechant et al. [15] studied the 

application of tuning masses integrated with cantilever beam arrays to reinforce the scavenged 

voltage. Nonlinear energy harvester analysis under a rotating element is studied by Mei et al. 

[16]. There are more technical articles addressing optimizing the PVEHs [17–20]. Based on the 

state-of-the-art provided, further developments in the design of PVEH are still expected. In this 

response; in this paper, integration of mass-spring subsystem with cantilever energy harvester is 

modeled and studied. For the first time, elastic support modeled via a spring transmits the inertia 

effects of the oscillator mass to the cantilever’s boundary conditions. Besides, the cantilever’s 

governing equation of motion is coupled to the oscillatory equation of the oscillator. In a separate 

article, we have studied that the oscillator mass and the spring stiffness constant directly alter the 

vibratory response of the proposed multisystem energy harvester, where significant deviations in: 

resonance frequencies, mode shapes, and transmissibility are addressed. In this paper, we have 

extended the former research to study the impact of the subsystem integration (oscillator-spring) 

over the cantilever response in terms of harvested voltage. The ultimate goal is to widen the 

operational frequency bandwidth and optimize the system with respect to the oscillator mass and 

spring constant. In other words, it is essential to improve the vibratory response of energy 

harvesters to capture more energy, along with wider operational frequency bandwidth. Such 

items are deliverable by integrating a subsystem with the cantilever. Thus, analyzing the 

vibratory response of the mentioned multi-system is important to assess the energy harvester’s 

performance improvement. Finally, for the first time, the proposed model is optimized with 

respect to the oscillator mass and spring stiffness to widen the effective frequency bandwidth, 

meaning that for which values of the mentioned parameters and for a given excitation, the 

bandwidth is the most widened bandwidth possible. This is specifically important to increase the 



4 A. Babaei et al./ Computational Engineering and Physical Modeling 5-4 (2022) 1-22 

application of such energy harvesters due to covering wider bandwidth. Addressing the 

bandwidth issue can lead to increment of piezoelectric energy harvesters applications in low-

power electronics as a power supply. 

2. Mathematical modeling and kinematics 

To obtain the governing system of equations, first one needs to define the displacement fields. 

The schematic configuration of the multi system of cantilever-oscillator-spring energy harvester 

is shown in the following picture: 

 
Fig. 1. Schematic of the cantilever-spring-mass energy harvester. 

𝜌𝑠, 𝜌𝑝 are substrate and piezoelectric layers density, 𝐴𝑠, 𝐴𝑝 show substrate and piezoelectric 

layers cross section areas, 𝐸𝑠, 𝐸𝑝 represent substrate and piezoelectric layers Yung’s modulus, 

𝐼𝑠, 𝐼𝑝 are substrate and piezoelectric layers second moment of inertia, beam has length of 𝐿, 

thickness of ℎ, width of 𝑏; 𝑥 − 𝑦 represents the Lagrangian cartesian coordinates, 𝑋 − 𝑌 is the 

fixed Eulerian cartesian coordinates. 𝑤𝑏(𝑥, 𝑡) is the base excitation, and 𝑤𝑟𝑒𝑙(𝑥, 𝑡) and 𝑤𝑠(𝑡) 

represent relative lateral displacement of beam and oscillator with respect to the Lagrangian 

coordinates, respectively. According to the Euler-Bernoulli beam models; displacement fields are 

defined as follows: 

ux(x, z, t) = −y
∂w𝑟𝑒𝑙

∂x
(x, t) (1a) 

uy(x, z, t) = w𝑟𝑒𝑙(𝑥, 𝑡) (1b) 

uz(x, z, t) = 0 (1c) 

Base structure 

 

Piezoelectric layer, 𝐸𝑝, 𝐼𝑝,  𝜌𝑝, 𝐴𝑝 

 

Substrate layer 

Oscillator 𝑚𝑜 

Spring 𝑘𝑠 
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To consider non-conservative work induced to the system, extended Hamilton’s principle will be 

utilized. Based on plane-stress assumptions for liner isotropic elements following Hooke’s law, 

constitutive relations of substrate and piezoelectric layers can be expressed as follows: 

𝑇1
𝑠 = 𝐸𝑠𝑆1 (2) 

𝑇1
𝑠 is stress, 𝑆1 is strain of substrate layer. Based on the piezoelectric constitutive equations 

stress-strain and electric field relations are: 

𝑇1
𝑝 = 𝐸𝑝(𝑆1 − 𝑑31𝐸3) (3a) 

휀33
𝑠 = 휀33

𝑇 − 𝑑31
2𝐸𝑝 (3b) 

𝐷3 = 𝑑31𝑇1
𝑝 + 휀33

𝑇𝐸3 (3c) 

𝑇1
𝑝 is stress at piezoelectric layers. 𝑑31 is piezoelectric coupling coefficient. 𝐸3 is electric field in 

𝑦-direction. 휀33
𝑠 and 휀33

𝑇 represent permittivity at constant strain and stress. 𝐷3 is electric 

displacement which acts only in 𝑧-difrection, respectively. Two types of damping mechanisms, 

internal and external are considered in this study. Internal damping is modeled as Kelvin-Voigt 

damping also named as strain-rate damping: 

𝑇𝑑 = 𝑐𝑠�̇�1 (4) 

𝑇𝑑 is stress due to strain-rate damping and 𝑐𝑠 illustrates viscoelastic damping coefficient due to 

structural viscoelasticity. Dot sign indicates differentiation in temporal domain. Both internal and 

external damping satisfy proportional damping criteria. 

For the proposed cantilever beam model, the kinetic energy (𝑈𝑘) due to base excitations is: 

𝑈𝑘 =
1

2
∫ 𝜌𝐴(�̇�𝑟𝑒𝑙(𝑥, 𝑡) + �̇�𝑏(𝑥, 𝑡))2𝐿

0
𝑑𝑥 +

1

2
𝑚𝑜(�̇�𝑟𝑒𝑙(𝐿, 𝑡) + �̇�𝑏(𝐿, 𝑡) + �̇�𝑠(𝑡))2 (5) 

Strain energy generated due to deflections (𝑈𝑠) is comprised of energy of the substrate and 

energy of the piezoelectric layers integrated over volume fractions (𝑉𝑠, 𝑉𝑝): 

𝑈𝑠 = 𝛿𝑈𝑠−1 + 𝛿𝑈𝑠−2 =  
1

2
∫ 𝑇1

𝑠𝑆1𝑑𝑉𝑠𝑉𝑠
+

1

2
∫ 𝑇1

𝑝𝑆1𝑑𝑉𝑝𝑉𝑝
=

1

2
∫ 𝐸𝑠𝑆1

2𝑑𝑉𝑠𝑉𝑠
+

1

2
∫ 𝐸𝑝(𝑆1

2 −
𝑉𝑝

𝑆1𝑑31𝐸3)𝑑𝑉𝑝 (6) 

Electrical energy (𝑊𝑒) is: 

𝑊𝑒 =
1

2
∫ 𝐷3𝐸3𝑑𝑉𝑝𝑉𝑝

 (7) 

Using following auxiliary relations, Eq. (7) can be written in the form of Eq. (12): 

E3 = −
v(t)

(2hp)⁄  (8) 

D3 = d31EpS1 − ε33
s v(t)

2hp
 (9) 
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Cp =
ε33

sbL

hp
 (10) 

𝑣(𝑡) = 𝑅𝑙�̇�3(𝑡) (11) 

𝑊𝑒 =
1

2
∫ −𝑑31𝐸𝑝𝑧𝑤𝑟𝑒𝑙,𝑥𝑥(

−𝑣(𝑡)

2ℎ𝑝
)𝑑𝑉𝑝 +

1

2𝑉𝑝
∫ 휀33

𝑠(
−𝑣(𝑡)

2ℎ𝑝
)2𝑑𝑉𝑝𝑉𝑝

 (12) 

In which 𝑣(𝑡) is the voltage across the resistive load and 𝑞3(𝑡) is the electric charge. 

External virtual work (𝑊𝑛𝑐) resulting from damping and dissipating resistive load of electrical 

circuit is: 

𝑊𝑛𝑐 = −
𝑑

𝑑𝑡
∫

1

2
𝑐𝑎

𝐿

0
(𝑤𝑟𝑒𝑙 + 𝑤𝑏)2𝑑𝑥 −

𝑑

𝑑𝑡
∫

1

2
𝑇𝑠𝑆1𝑉𝑠

𝑑𝑉𝑠 −
𝑑

𝑑𝑡
(

1

2
𝑅𝑙𝑞3

2(𝑡)) (13) 

Hamilton’s approach is one of the mostly well-known variational methods to derive the 

equations of motion of continuous systems. Based on the Hamilton’s variational principle, 

variations of systems’ Lagrangian (𝐿 = 𝑈𝑘 − 𝑈𝑠 − 𝑈𝑡ℎ + 𝑊𝑒 + 𝑊𝑛𝑐) is zero in a short time 

interval (∫ 𝛿𝐿𝑑𝑡 = 0
𝑡2

𝑡1
). To apply such a concept, variations of energy terms are to be obtained: 

𝛿𝑈𝑘 =

∫ 𝜌𝐴
𝐿

0
(�̇�𝑟𝑒𝑙(𝑥, 𝑡) + �̇�𝑏(𝑥, 𝑡))𝛿�̇�𝑟𝑒𝑙(𝑥, 𝑡)𝑑𝑥 + 𝑚𝑜(�̇�𝑟𝑒𝑙(𝐿, 𝑡) + �̇�𝑏(𝐿, 𝑡) + �̇�𝑠(𝑡))𝛿�̇�𝑠(𝑡) +

∫ 𝑚𝑜
𝐿

0
(�̇�𝑟𝑒𝑙(𝑥, 𝑡) + �̇�𝑏(𝑥, 𝑡) + �̇�𝑠(𝑡))𝛿(𝑥 − 𝐿)𝛿�̇�𝑟𝑒𝑙(𝑥, 𝑡)𝑑𝑥 (14) 

𝛿𝑈𝑠−1 = 𝐸𝑠𝐼𝑠𝑤𝑟𝑒𝑙,𝑥𝑥𝛿𝑤𝑟𝑒𝑙,𝑥|
0

𝐿
− 𝐸𝑠𝐼𝑠𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝛿𝑤𝑟𝑒𝑙|0

𝐿 + ∫ 𝐸𝑠𝐼𝑠𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝑥
𝐿

0
𝛿𝑤𝑟𝑒𝑙𝑑𝑥 (15) 

𝛿𝑈𝑠−2 = 2𝐼𝑝𝐸𝑝𝑤𝑟𝑒𝑙,𝑥𝑥𝛿𝑤𝑟𝑒𝑙,𝑥|
0

𝐿
− 2𝐸𝑝𝐼𝑝𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝛿𝑤𝑟𝑒𝑙|0

𝐿 + ∫ 2𝐸𝑝𝐼𝑝𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝑥
𝐿

0
𝛿𝑤𝑟𝑒𝑙𝑑𝑥 +

−𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝
𝑣(𝑡)[𝐻(𝑥) − 𝐻(𝑥 − 𝐿)]𝛿𝑤𝑟𝑒𝑙,𝑥|

0

𝐿
+ 𝑄𝑝𝐸𝑝

𝑑31

2ℎ𝑝
𝑣(𝑡)[𝛿(𝑥) − 𝛿(𝑥 − 𝐿)]𝛿𝑤𝑟𝑒𝑙|0

𝐿 −

∫ 𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝
𝑣(𝑡)[�́�(𝑥) − �́�(𝑥 − 𝐿)]

𝐿

0
𝛿𝑤𝑟𝑒𝑙𝑑𝑥 − ∫ 𝑄𝑝𝐸𝑝

𝑑31

2ℎ𝑝

𝐿

0
𝑤𝑟𝑒𝑙,𝑥𝑥𝛿�̇�(𝑡)𝑑𝑥 (16) 

𝛿𝑈𝑠𝑠 = 𝑘𝑠𝑤𝑠𝛿𝑤𝑠 (17) 

𝛿𝑊𝑒  = −𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝
𝑣(𝑡)[𝐻(𝑥) − 𝐻(𝑥 − 𝐿)]𝛿𝑤𝑟𝑒𝑙,𝑥|

0

𝐿
+ 𝑄𝑝𝐸𝑝

𝑑31

2ℎ𝑝
𝑣(𝑡)[𝛿(𝑥) − 𝛿(𝑥 −

𝐿)]𝛿𝑤𝑟𝑒𝑙|0
𝐿 − ∫ 𝑄𝑝𝐸𝑝

𝑑31

2ℎ𝑝
𝑣(𝑡)[�́�(𝑥) − �́�(𝑥 − 𝐿)]

𝐿

0
𝛿𝑤𝑟𝑒𝑙𝑑𝑥 − ∫ 𝑄𝑝𝐸𝑝

𝑑31

2ℎ𝑝

𝐿

0
𝑤𝑟𝑒𝑙,𝑥𝑥𝛿�̇�(𝑡)𝑑𝑥 +

∫ 휀33
𝑠 𝑣(𝑡)

(2ℎ𝑝)
2 𝛿𝑣(𝑡)𝑑𝑉𝑝𝑉𝑝

 (18) 

𝛿𝑊𝑛𝑐 = − ∫ 𝑐𝑎(�̇�𝑟𝑒𝑙 + �̇�𝑏)𝛿𝑤𝑟𝑒𝑙𝑑𝑥
𝐿

0
− ∫ 𝑐𝑠𝐼

𝐿

0
�̇�𝑟𝑒𝑙,𝑥𝑥𝑥𝑥𝛿𝑤𝑟𝑒𝑙𝑑𝑥 −

�̇�(𝑡)

𝑅𝑙
𝛿𝑣 (19) 

In the above-mentioned equations 𝐼𝑠, 𝐼𝑝 are second moment of inertia of the substrate and the 

piezoelectric layers. 𝐻(𝑥) is Heaviside (unit step) function to model concentrated coverage of 

electrodes in 𝑥-direction. 𝛿(𝑥) is Dirac delta function. 𝑄𝑝 is the first moment of inertia of the 
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piezoelectric layers. 𝑐𝑎 and 𝑐𝑎 denote the viscous air damping and the structural strain rate 

(Kelvin-Voigt) damping coefficients. 

𝐼𝑠 = ∫ 𝑧2𝑑𝐴𝑠 =
𝐴𝑠

1

12
𝑏ℎ𝑠

3
 (20) 

𝑄𝑝 = ∫ 𝑧𝑑𝐴𝑝𝐴𝑝
=

1

2
𝑏ℎ𝑝(ℎ𝑝 + ℎ𝑠) (21) 

𝐼𝑝 = ∫ 𝑧2𝑑𝐴𝑝𝐴𝑝
=

1

3
𝑏ℎ𝑝(ℎ𝑝

2 +
3

2
ℎ𝑝ℎ𝑠 +

3

4
ℎ𝑠

2) (22) 

𝐸𝐼 = 𝐸𝑠𝐼𝑠 + 2𝐸𝑝𝐼𝑝 (23) 

𝐸𝐼 is the total flexural rigidity (bending stiffness) of the cantilever beam in bending. After some 

mathematical operations, the system of coupled electromechanical partial integro-differential 

equations of the cantilever-oscillator-spring piezoelectric beam is derived: 

𝜌𝐴�̈�𝑟𝑒𝑙(𝑥, 𝑡) + 𝐸𝐼𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝑥(𝑥, 𝑡) + 𝑐𝑎�̇�𝑟𝑒𝑙(𝑥, 𝑡) + 𝑐𝑠𝐼�̇�𝑟𝑒𝑙,𝑥𝑥𝑥𝑥(𝑥, 𝑡) − 𝛤2𝑣(𝑡)[ �́�(𝑥) −

�́�(𝑥 − 𝐿)] = −𝜌𝐴�̈�𝑏(𝑥, 𝑡) − 𝑐𝑎�̈�𝑏(𝑥, 𝑡) − 𝑚𝑜𝛿(𝑥 − 𝐿)�̈�𝑏(𝑡) (24a) 

∫ 𝛤2
𝐿

0
�̇�𝑟𝑒𝑙,𝑥𝑥(𝑥, 𝑡)𝑑𝑥 +

𝐶𝑝

2
�̇�(𝑡) = −

𝑣(𝑡)

𝑅𝑙
 (24b) 

𝑚𝑜(�̈�𝑟𝑒𝑙(𝐿, 𝑡) + �̈�𝑠(𝑡) + �̈�𝑏(𝐿, 𝑡)) + 𝑘𝑠𝑤𝑠(𝑡) = 0 (24c) 

Where, 𝛤2 is: 

𝛤2 =
𝐸𝑝𝑄𝑝𝑑31

ℎ𝑝
 (25) 

Corresponding boundary conditions of the modeled system is: 

𝑤𝑟𝑒𝑙(0, 𝑡) = 0 (26a) 

𝑤𝑟𝑒𝑙,𝑥(0, 𝑡) = 0 (26b) 

𝑤𝑟𝑒𝑙,𝑥𝑥(𝐿, 𝑡) = 0 (26c) 

𝐸𝐼𝑤𝑟𝑒𝑙,𝑥𝑥𝑥(𝐿, 𝑡) − 𝑚𝑜(�̈�𝑟𝑒𝑙(𝐿, 𝑡) + �̈�𝑠(𝑡)) = 0 (26d) 

Analytical-numerical solution approach using Galerkin’s modal decomposition method 

To find the system response, it is required to first discretize the system into spatial and temporal 

domains. Based on the Galerkin’s decomposition, relative motion of the distributed-parameter 

system can be expressed by converging expansion series of temporal and spatial functions: 

𝑤𝑟𝑒𝑙(𝑥, 𝑡) = ∑ 𝜙𝑛(𝑥)∞
𝑛=1 휂𝑛(𝑡) (27) 

𝜙𝑛(𝑥) is the mass-normalized eigenfunction corresponding to the free vibration case and 휂𝑛(𝑡) 

is the modal coordinate of the system in 𝑛th vibration mode. To find the eigenfunctions and the 

eigenvalues, spatial part can be assumed as an exponential function 휂𝑛(𝑡) = 𝑒𝑗𝜔𝑛𝑡. 𝑗 is the unit 

imaginary number, 𝜔𝑛 is the resonance frequency of the system, and 𝑡 is the time variable. The 
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undamped free vibration system is simply obtainable and the boundary conditions are identical to 

the main system: 

𝜌𝐴�̈�𝑟𝑒𝑙(𝑥, 𝑡) + 𝐸𝐼𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 0 (28a) 

𝑚𝑜(�̈�𝑟𝑒𝑙(𝐿, 𝑡) + �̈�𝑠(𝑡)) + 𝑘𝑠𝑤𝑠(𝑡) = 0 (28b) 

𝑤𝑟𝑒𝑙(0, 𝑡) = 0 (29a) 

𝑤𝑟𝑒𝑙,𝑥(0, 𝑡) = 0 (29b) 

𝑤𝑟𝑒𝑙,𝑥𝑥(𝐿, 𝑡) = 0 (29c) 

𝐸𝐼𝑤𝑟𝑒𝑙,𝑥𝑥𝑥(𝐿, 𝑡) − 𝑚𝑜(�̈�𝑟𝑒𝑙(𝐿, 𝑡) + �̈�𝑠(𝑡)) = 0 (29d) 

General proposed solution for 𝜙𝑛(𝑥) is a linear combination of trigonometric and hyperbolic 

functions: 

𝜙𝑛(𝑥) =
1

√𝜌𝐴𝐿
(𝑐𝑜𝑠ℎ 𝜆𝑛 𝑥 − 𝑐𝑜𝑠 𝜆𝑛 𝑥 −

𝑐𝑜𝑠ℎ 𝜆𝑛𝐿+𝑐𝑜𝑠 𝜆𝑛𝐿

𝑠𝑖𝑛ℎ 𝜆𝑛𝐿+𝑠𝑖𝑛 𝜆𝑛𝐿
(𝑠𝑖𝑛ℎ 𝜆𝑛𝑥 − 𝑠𝑖𝑛 𝜆𝑛𝑥)) (30) 

To further proceed, equation of the oscillator should be solved first. 

�̈�𝑠(𝑡) + 𝜔𝑛𝑜
2𝑤𝑠(𝑡) − 𝜔𝑛

2𝜙𝑛(𝐿)𝑒𝑗𝜔𝑡 = 0 (31) 

Where 𝜔𝑛𝑜 represents the natural frequency of the oscillator (𝜔𝑛𝑜 = √𝑘𝑠 𝑚𝑜⁄ ). Particular 

solution (transient response) for oscillations of the oscillator is: 

𝑤𝑠(𝑡) =
𝜔𝑛

2

𝜔𝑛𝑜
2−𝜔𝑛

2 𝜙𝑛(𝐿)𝑒𝑗𝜔𝑡 (32) 

Applying the natural boundary conditions of a cantilever to Eq. (35a), the transcendental 

characteristic equation is derived with 𝜆𝑛𝐿 as the roots (eigenvalues): 

(
𝑚𝑜𝐿3

𝜌𝐴𝐿
𝜆𝑛

4 −
𝑘𝑠𝐿3

𝐸𝐼𝐿
) (1 + 𝑐𝑜𝑠(𝜆𝑛 𝐿) 𝑐𝑜𝑠ℎ(𝜆𝑛 𝐿)) − 𝜆𝑛 (

𝑚𝑜

𝜌𝐴𝐿
) (

𝑘𝑠𝐿3

𝐸𝐼
) (𝑠𝑖𝑛ℎ(𝜆𝑛𝐿) 𝑐𝑜𝑠(𝜆𝑛𝐿) −

𝑐𝑜𝑠ℎ(𝜆𝑛𝐿) 𝑠𝑖𝑛(𝜆𝑛𝐿)) = 0 (33) 

Introducing the mass ratio (𝑟𝑚 =
𝑚𝑜

𝜌𝐴𝐿
) and the stiffness ratio (𝑟𝑠 =

𝑘𝑠

(𝐸𝐼 𝐿3⁄ )
) parameters, one can re-

write the transcendental nonlinear characteristic equation in the following format: 

𝑟𝑠𝑟𝑚(𝜆𝑛𝐿)(𝑠𝑖𝑛ℎ(𝜆𝑛𝐿) 𝑐𝑜𝑠(𝜆𝑛𝐿) − 𝑐𝑜𝑠ℎ(𝜆𝑛𝐿) 𝑠𝑖𝑛(𝜆𝑛𝐿)) −
(𝑟𝑠 − 𝑟𝑚(𝜆𝑛𝐿)4)(1 + 𝑐𝑜𝑠(𝜆𝑛 𝐿) 𝑐𝑜𝑠ℎ(𝜆𝑛 𝐿)) = 0 (34) 

The obtained equations is obviously different than the equation pertinent to the cantilever system 

([21]). It is understandable that setting the mass and stiffness ratios equal to zero, yields the 

conventional characteristic equation. Eq. (40) is a transcendental and nonlinear equation which 

does not have a closed-form and exact solution. Consequently, numerical solvers are considered. 

Among numerical solver algorithms available, VPASOLVE is a decent solver included within 

MATLAB software package. However, similar to most of the numerical solvers, VPASOLVE 
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accuracy totally relies on the value of the initial guess. To better provide such initial guesses, 

plotting the equations sounds useful. 

 
Fig. 2. Characteristic equation for different values of mass ratio and 𝑟𝑠 = 0.01. 

A comprehensive study about the vibratory and structural dynamics of cantilever-oscillator-

spring system is accomplished in another technical essay, which conducts the numerical method 

to peruse frequency shifts due to the spring constant and oscillator mass. After finding the 

eigenvalues of the system, one can find the time and spatial-domain response using the 

Galerkin’s approach. Substitution of Eq. (27) into Eq. (24a), multiplying both sides by 𝜙𝑚(𝑥) 

and integrating over the length of the beam along with benefiting the orthogonality of 

eigenfunctions, partial differential equation can be converted into time-domain ordinary 

differential equation: 

휂̈𝑛(𝑡) + (
𝑐𝑠𝐼

𝐸𝐼
𝜔𝑛

2 +
𝑐𝑎

𝜌𝐴
) 휂̇𝑛(𝑡) + 𝜔𝑛

2 휂𝑛(𝑡) = (𝜒𝑛𝑣(𝑡) + (𝜌𝐴𝛾𝑛 + 𝑚𝑜𝛾𝑛
𝑜)𝜔𝑒

2𝑌0𝑒𝑗𝜔𝑒𝑡)/𝐵𝑛 (35) 

Where, 

𝐵𝑛 = ∫ 𝜙𝑛,𝑥𝑥(𝑥)𝜙𝑛
𝐿

0
(𝑥)𝑑𝑥 (36a) 

𝛾𝑛 = ∫ 𝜙𝑛(𝑥)𝑑𝑥
𝐿

0
 (36b) 

𝛾𝑛 = 𝜙𝑛(𝐿) (36c) 

𝜒𝑛 = 𝛤2𝜙𝑛,𝑥|
𝐿
 (36d) 

It is assumed the excitation to the system is harmonic (𝑤𝑏(𝑡) = 𝑌0𝑒𝑗𝜔𝑒𝑡). According to the 

linearity and principle of superposition, output voltage can also be assumed as a harmonic 

function unknown amplitude 𝑉0: 

𝑣(𝑡) = 𝑉0𝑒𝑗𝜔𝑒𝑡 (37) 

Substituting Eqs. (35) and (44) into Eq. (32) yields Eq. (45): 

�̇�(𝑡) +
1

𝜏𝑐
𝑣(𝑡) = − ∑ 𝛩𝑛

∞
𝑛=1 휂̇𝑛(𝑡) (38a) 
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𝜏𝑐 =
𝐶𝑝𝑅𝑙

2
 (38b) 

𝛩𝑛 =
2𝛤2

𝐶𝑝
𝜙𝑛,𝑥|

𝐿
 (38c) 

In energy harvesting systems, steady-state response of the vibratory part is of primary concern. 

Thus, particular answer part of the Eq. (35) is to be obtained: 

휂𝑛(𝑡) =
(𝜌𝐴𝛾𝑛+𝑚𝑜𝛾𝑛

𝑜)𝑌0𝜔𝑒
2+𝜒𝑛𝑉0

𝐵𝑛(𝜔𝑛
2−𝜔𝑒

2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)
𝑒𝑗𝜔𝑒𝑡 (39) 

In Eq. (39), 휁𝑛 is modal damping term: 

휁𝑛 =
𝑐𝑎

2𝜌𝐴𝜔𝑛
+

𝑐𝑠𝐼

2𝐸𝐼
𝜔𝑛 (40) 

Now, substitution Eq. (39) into Eq. (38a) results the output voltage across the resistive load: 

𝑣(𝑡) =
∑

−𝑗𝛩𝑛(𝜌𝐴𝛾𝑛+𝑚𝑜𝛾𝑛
𝑜)𝜔𝑒

3𝑌0
𝐵𝑛(𝜔𝑛

2−𝜔𝑒
2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)

∞
𝑛=1

1

𝜏𝑐
+𝑗𝜔𝑒+∑

𝑗𝛩𝑛𝜒𝑛𝜔𝑒
𝐵𝑛(𝜔𝑛

2−𝜔𝑒
2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)

∞
𝑛=1

𝑒𝑗𝜔𝑒𝑡 (41) 

Besides to the output voltage, shunted vibration response of the cantilever can be found as 

follows: 

𝑤𝑟𝑒𝑙(𝑥, 𝑡) =

∑
1

√𝜌𝐴𝐿
(𝑐𝑜𝑠ℎ 𝜆𝑛 𝑥 − 𝑐𝑜𝑠 𝜆𝑛 𝑥 −

𝑐𝑜𝑠ℎ 𝜆𝑛𝐿+𝑐𝑜𝑠 𝜆𝑛𝐿

𝑠𝑖𝑛ℎ 𝜆𝑛𝐿+𝑠𝑖𝑛 𝜆𝑛𝐿
(𝑠𝑖𝑛ℎ 𝜆𝑛𝑥 −∞

𝑛=1

𝑠𝑖𝑛 𝜆𝑛𝑥))

(𝜌𝐴𝛾𝑛+𝑚𝑜𝛾𝑛
𝑜)𝑌0𝜔𝑒

2+𝜒𝑛

∑
−𝑗𝛩𝑛(𝜌𝐴𝛾𝑛+𝑚𝑜𝛾𝑛

𝑜)𝛾𝑛𝜔𝑒
3

𝐵𝑛(𝜔𝑛
2−𝜔𝑒

2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)
∞
𝑛=1

1
𝜏𝑐

+𝑗𝜔𝑒+∑
𝑗𝛩𝑛𝜒𝑛𝜔𝑒

𝐵𝑛(𝜔𝑛
2−𝜔𝑒

2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)
∞
𝑛=1

𝐵𝑛(𝜔𝑛
2−𝜔𝑒

2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)
𝑒𝑗𝜔𝑒𝑡 (42) 

Results and discussion 

To study and optimize the operational frequency bandwidth, steady-state response of the system 

is of concern. Properties of the harvester piezoelectric beam are presented in the following Table. 

Table 1 

Geometric and mechanical properties of beam [22]. 

Beam length 𝑳 = 𝟏𝟎𝟎𝒎𝒎 

Beam width 𝑏 = 20𝑚𝑚 

Substrate layer thickness ℎ𝑠 = 5µ𝑚 

PZT layer thickness ℎ𝑝 = 4µ𝑚 

PZT modulus of elasticity 𝐸𝑝 = 66 𝐺𝑃𝑎 

PZT mass density 𝜌 = 7800
𝑘𝑔

𝑚3
 

PZT coupling coefficient 𝑑31 = −190
𝑝𝑚

𝑉
 

PZT permittivity at constant strain 휀33
𝑠 = 15.93

𝑛𝐹

𝑚
 

electric circuit resistance 𝑅𝑙 = 106Ω 
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Similar to the continuous (distributed-parameter) systems, the first few vibration modes are of 

major interest. This concept is valid for analyzing the effective frequency bandwidth as the most 

amount of extractable energy takes place in the initial modes. So, the excitation (driving) 

frequency is supposed to cover mostly the initial resonances. Damping ratio of the cantilever is 

considered as following values which are obtained experimentally [22]: 

Table 2 
Proportional damping values for first three modes of vibration [22]. 

𝜻𝟏 𝜻𝟏 𝜻𝟏 

0.010 0.013 0.033 

2.1. Output electric frequency response functions (V-FRF, P-FRF) 

Mostly, in coupled electromechanical systems voltage FRF (V-FRF) is defined as the modulus of 

the output voltage to the base acceleration induced to the harvester substrate. 

𝑣(𝑡)

�̈�(𝑡)
=

∑
−𝑗𝛩𝑛(𝜌𝐴𝛾𝑛+𝑚𝑜𝛾𝑛

𝑜)𝜔𝑒
𝐵𝑛(𝜔𝑛

2−𝜔𝑒
2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)

∞
𝑛=1

1

𝜏𝑐
+𝑗𝜔𝑒+∑

𝑗𝛩𝑛𝜒𝑛𝜔𝑒
𝐵𝑛(𝜔𝑛

2−𝜔𝑒
2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)

∞
𝑛=1

 (43) 

Accessing the voltage function, the power frequency response function (P-FRF) is simply 

obtainable similarly: 

𝑝(𝑡)

�̈�(𝑡)
= (

∑
−𝑗𝛩𝑛(𝜌𝐴𝛾𝑛+𝑚𝑜𝛾𝑛

𝑜)𝜔𝑒

𝐵𝑛(𝜔𝑛
2−𝜔𝑒

2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)
∞
𝑛=1

1

𝜏𝑐
+𝑗𝜔𝑒+∑

𝑗𝛩𝑛𝜒𝑛𝜔𝑒
𝐵𝑛(𝜔𝑛

2−𝜔𝑒
2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)

∞
𝑛=1

)2/𝑅𝑙 (44) 

 
Fig. 3. Voltage frequency response function with respect to excitation frequency (constant mass ratio). 

It is observed that for several values of the oscillator mass and spring constant, a minimal 

resonance takes place at the small numbers. This resonance is usually close to the second 

resonance. Based on this figure, it is observable that the integration of spring-mass subsystem 

with the cantilever notably improves the harvester’s performance in terms of the amount of 
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harvestable energy as well as the effective frequency bandwidth. For example, the magenta line 

with an oscillator and stiffness ratios of 1 has wider bandwidth than the pure cantilever system 

shown in dashed blue line. It is also noteworthy that setting zero values for oscillator mass and 

soring stiffness (dashed black line) results in conventional pure cantilever. This line is verified 

against the reference ([22]) to validate current results. 

2.2. Optimizing the cantilever-spring-oscillator energy harvester using soft computing 

The effective frequency bandwidth is assumed as the difference between the minimal and the 

third resonances. As mentioned earlier, the ultimate goal is to find the specific values of 

oscillator mass and spring constant in which, the effective frequency bandwidth is the most 

widened bandwidth. Obviously, this is an optimization problem with the oscillator mass and 

spring constant as design parameters to be tuned. Such tuned parameters will optimize the 

effective frequency bandwidth as the objective (utility/fitness) function. To this end, the global 

algorithm of genetic optimization is taken. Genetic algorithm (GA) basically iterates for large 

number of times over the candidate solution and then over the evolutionary-generated solution 

populations. On the other hand, the derived voltage frequency response function (FRF) via 

analytical-numerical method, is a computationally-expensive function. It means that, it takes 

high level of computational time to evaluate the mentioned functions. This is mainly due to the 

large number of parameters in voltage FRF and the complexity of the function in nature. More 

importantly, the first step in using the analytical-numerical closed-form function is to find the 

eigenvalues of the nonlinear transcendental characteristic equation which needs to be repeated 

per each oscillator mass and spring constant values. Keeping in mind that the mentioned 

characteristic equation is solved by numerical methods (e.g., VPASOLVE), decent initial guess is 

demanded which requires plotting the function. There is not a consolidated computer program 

script to get the mass and stiffness ratios and generate the voltage FRF subsequently. This means 

that eigenvalue and voltage function evaluations are both hard-to-evaluate and non-automatic 

processes. Considering both the curse of time computations and manual process; evaluation of 

the both functions is impossible for high number of iterations. To obviate such a problem, soft 

computing algorithms including: fuzzy logic, neural networks, and genetic optimization; can be 

adopted. As for the function evaluations, a regressor (function approximator) model is required. 

Such regressor model can be designed by training finite number of results with mass and 

stiffness ratios as the inputs and the resonance frequencies as the outputs. To train such 

prediction models, fuzzy logic is preferred to the other cases since it is established based on 

semantic descriptions which is interpretable. Besides, fuzzy logic is easier to train and works 

well with nonlinearity and imprecisions. Thus, fuzzy logic is a decent approach to train the 

regressor model to be used in the genetic algorithm. 

This figure shows the outline of FIS in MATLAB using the ANFIS toolbox. In training decent 

fuzzy logic architecture, type and number of membership functions (MFs), scales and range of 

the membership functions are determined and tuned. Such tuning can be improved with the 

adoption of neural networks where the learning capability is added to the fuzzy inference system 

(FIS). Thus adaptive-neuro-fuzzy-inference-system (ANFIS) in MATLAB is used. 
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Fig. 4. Adaptive neuro fuzzy inference system structure. 

2.3. Designing adaptive-neuro-fuzzy-inference-system (ANFIS) 

To train the fuzzy inference system to learn the pattern of the voltage function, 231 cases (11 

different values for 𝑟𝑚 = [10−4, 106] and 21 different values for 𝑟𝑠 = [10−4, 102]) have been 

perused using the analytical-numerical closed-form expression of the voltage FRF to obtain the 

dataset. 

The generated voltage dataset of is divided into train set (80%), validation (checking) set (10%), 

and test set (10%). Test dataset is used to evaluate the performance of the trained model on the 

new and unseen data. On the other hand, validation (checking) dataset is created to avoid 

overfitting of the model. It is also good to note that overfitting and underfitting mainly pertains 

to the complexity of the model. If the model is too simple, it will fail to predict even with the 

train dataset, this is known as the underfitting issue. Such models are computationally fast but 

practically lack precision. Increasing the complexity of the model leads to more accurate 

predictions. However, this will also result in more computational time. Besides to the 

computational cost issue, highly complex models perform well with the train dataset but fail to 

generalize and operate correctly with the new unseen datasets in terms of accuracy and precision. 

This is known as the overfitting issue which means the model fails to generalize. Similarly, such 

too complex models are not desired. To avoid the overfitting issue by means of cross validation 

technique, ANFIS toolbox in MATLAB is equipped with checking (validation) dataset. To train a 

decent fuzzy inference system (FIS), eight different membership function types are tested for the 

estimation of first frequency. Same procedure is duplicated for the third resonance. As for 

increasing the FIS capability, the raw dataset is preprocessed by taking the logarithm to the base 

of 10. 

Table 3 
ANFIS training properties for first and third resonances. 

Number of MF for 𝒓𝒎: 7, 8 Neural network optimization: Hybrid  Fuzzy type: Takagi Sugeno (MISO) 

Number of MF for 𝒓𝒔: 7, 8 Number of Epochs: 300 Number of Fuzzy rules: 49, 64 

Type of MF: Gaussian  Error tolerance: 0  

FIS Generation: Grid partitioning  Output MF type: Constant   
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In the above table, brief information about the generated FISs is listed which are used to compare 

and choose the best type of MFs. 

Table 4 
Different types of MFs (300 Epochs and 7 by 7 MFs) for first (minimal) resonance. 

MF type Train error Test error Validation error 

Triangular 0.0068735 0.13659 0.096411 

trapezoidal 0.010127 0.13489 0.10126 

Bell 0.0069811 0.13598 0.092355 

Gaussian 0.0068203 0.13632 0.092211 

Gauss2 0.0094394 0.13704 0.098782 

Polynomial 0.037733 0.12612 0.11003 

Polynomial-sigmoid 0.0011285 0.14043 0.09739 

Double sigmoid 0.011307 0.14044 0.097398 

 

Complicated and nonlinear MF usually start with better initial guesses. While, the simple and 

linear MF (e.g., trapezoid and triangular) usually initiate with weak kickoffs and as a result 

require more epochs and computational efforts. According to the different root-mean-square-

error (RMSE) for train, test and validation datasets; it is evident that Gauss, polynomial, 

trapezoidal, and bell type of membership functions show the best performance in capturing the 

structure of the dataset and ending in the least test error. The value of RMSE for test dataset 

looks more important in adopting the proper MF, other RMSE values (RMSE for train and 

validation datasets) can be handy in cases where the test RMSE values are close to each other. 

Gauss MF looks the best function with the best RMSE values for overall train, test, and 

validation dataset root-mean-square-errors (RMSEs). 

Table 5 
Different types of MFs (300 Epochs and 7 by 7 MFs) for third resonance. 

MF type Train error Test error Validation error 

Triangular 0.0097362 0.16244 0.031308 

Trapezoidal 0.012658 0.16402 0.024406 

Bell 0.0085471 0.15886 0.022625 

Gauss 0.008666 0.15791 0.018515 

Gauss2 0.0088859 0.16234 0.014357 

Polynomial 0.014318 0.16453 0.025687 

Polynomial-sigmoid 0.0088589 0.16211 0.014197 

Double-sigmoid 0.00888698 0.16211 0.014218 

 

Similar assessment process is accomplished to choose the best operational membership function 

(MF) for training the neural networks and fuzzy inference sets corresponding to the third 

resonance frequency. In the above table, 8 different types of the built-in membership functions 

(MFs) are trained in two sets of 7 by 7 membership functions for each case and 300 epochs. By 

comparison, bell, and Gauss MFs reveal the smallest RMSE corresponding to the test dataset. 

Taking advantage of the RMSE for train and validation datasets, Gauss MF looks as the best MF 

with least root-mean-square-error overall. So, for both the first and the third resonances, 

Gaussian type of MFs are chosen. 
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Table 6 
Comparison of different numbers of Gauss MF for the first resonance (300 epochs). 

Number of MFs Number of FIS rules Train RMSE error Test RMS error Validation RMSE error 

4 by 4 16 0.020586 0.13979 0.098779 

5 by 5 25 0.012186 0.14225 0.13314 

6 by 6 36 0.0051999 0.14459 0.11353 

7 by 7 49 0.0068761 0.13632 0.092211 

8 by 8 64 0.0030542 0.14326 0.088407 

9 by 9 81 0.00313 0.42387 0.44046 

10 by 10 100 0.0005196 0.18506 0.38915 

11 by 11 121 0.00043178 0.27641 0.61551 

 

After choosing the most accurate type of MF to train the fuzzy inference system; number of 

membership functions (MFs) per each input, and the corresponding number of generated fuzzy 

rules for the entire fuzzy inference system are to be determined. It is good to note, since the 

adaptive-neural-fuzzy-inference-system (ANFIS) is established based on the Takagi Sugeno 

inference system, it accepts only the MISO (multi input single output). As a result, two different 

types of neural networks systems are designed, one for the minimal (first) resonance prediction, 

and the other one for estimating the third resonance. Neural networks is designed for various 

numbers of the MFs revealing the corresponding RMSE for train, test, and validation datasets. 

64-fuzzy-rule system looks the best one as it has the smallest overall RMSE values. 

Table 7 
Comparison of different numbers of Gauss MF for the third resonance (300 epochs). 

Number of MFs 
Number of FIS 

rules 
Train RMSE error Test RMS error 

Validation RMSE 

error 

4 by 4 16 0.028322 0.15453 0.032258 

5 by 5 25 0.0314667 0.16453 0.027144 

6 by 6 36 0.012834 0.15349 0.020544 

7 by 7 49 0.008666 0.15791 0.018515 

8 by 8 64 0.0084171 0.21796 0.16123 

9 by 9 81 0.00042842 0.38683 0.30777 

10 by 10 100 0.00045149 0.57157 1.0133 

11 by 11 121 0.00025684 1.0601 1.0177 

 

The above table is provided to compare different numbers of MFs and the corresponding 

generated fuzzy rules for the third resonance. Starting from a 5 by 5 fuzzy system and increasing 

up to 11 by 11 fuzzy system; the 49-fuzzy-rule system generated from a 7 by 7 system performs 

the most accurately due to the least overall train, test, and validation RMSE values. 

Table 8 
Frequency bandwidth between the first and the third resonance. 

Frequency bandwidth 𝑟𝑠 = 10−4 𝑟𝑠 = 10−2 𝑟𝑠 = 1 𝑟𝑠 = 102 

𝑟𝑠 = 10−4 2.6396 2.4644 2.4789 2.4794 

𝑟𝑠 = 1 4.0444 2.0485 2.3902 2.4798 

𝑟𝑠 = 10 6.5456 3.3876 2.4322 2.6886 

𝑟𝑠 = 106 6.5445 6.4426 5.5732 5.6069 
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In Table 8 different values of mass and stiffness ratios are chosen arbitrarily and the 

corresponding frequency bandwidth is calculated using Gaussian fuzzy inference system. It is 

good to note wider dataset is used in the fuzzy inference system and this table is shown as a 

sample. 

Table 9 
Sample of fuzzy rules used in ANFIS for the third resonance. 

Rule IF Input 1 is AND IF Input 2 is THEN Output is 

1 In input1 MF1 In input2 MF1 In output MF1 

9 In input1 MF2 In input2 MF1 In output MF9 

20 In input1 MF3 In input2 MF4 In output MF20 

30 In input1 MF4 In input2 MF6 In output MF30 

45 In input1 MF6 In input2 MF5 In output MF45 

64 In input1 MF1 In input2 MF1 In output MF64 

 

Total of 64 rules are generated from the 8 by 8 fuzzy structure. The rules are connected with each 

other by ‘and’ connection method and with unit weight per rule. 6 rules are represented in the 

above table to show how IF-THEN rules in fuzzy inference system form a set of rules. 

Table 10 
ANFIS information for third resonance using Gaussian membership function. 

ANFIS properties  

Fuzzy operations And-Method Prod 

Fuzzy operations Or-Method Probor 

Implication method Prod (minimum) 

Aggregation method Sum (maximum) 

Defuzzification method wtaver 

Input 1 membership function range [-2,6] 

Input 2 membership function range [-2,4] 

Output membership function range [-1,2.6] 

Connection type between the rules And 

Weight per each rule 1 

 

Details about the type and structure of the ANFIS designed for the third resonance is presented in 

the above table. 

Table 11 
ANFIS information for third resonance using Gaussian membership function. 

ANFIS properties  

Fuzzy operations And-Method Prod 

Fuzzy operations Or-Method Probor 

Implication method Prod (minimum) 

Aggregation method Sum (maximum) 

Defuzzification method wtaver 

Input 1 membership function range [-2,6] 

Input 2 membership function range [-2,4] 

Output membership function range [3.4,3.84] 

Connection type between the rules And 

Weight per each rule 1 
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Similar table is shown in the above to provide detailed information about the structure of the 

ANFIS designed for the first resonance. 

2.4. Genetic algorithm 

After designing the fuzzy inference regressor system by means of neural networks, the regressor 

can be fed into the genetic algorithm to yield the maximum effective (operational) frequency 

bandwidth between the minimal (first) resonance and the third resonance. This means, genetic 

optimization algorithm will find the optimal values of the mass and stiffness ratios (oscillator 

mass, and spring stiffness) so that the effective frequency bandwidth is widened the most for a 

given excitation. The reason for considering such a frequency bandwidth from the minimal 

resonance rather than the second resonance is due to the fact that such a minimal resonance does 

not take place in all of the design parameter values, and this way the impact of the new system 

configuration over the effective bandwidth is highlighted. Determining the design parameters 

range is a first step in optimization design problems. It is supposed for the spring constant to stay 

in the interval of 𝑟𝑠 = [0.01, 1] and the oscillator mass to fall in the interval of 𝑟𝑠 = [0.01, 2.5]. 

 
Fig. 9. Evolutionary path of the genetic optimization with different selections (Roulette wheel, 

tournoment, random). 

This figure illustrates the genetic optimization evolutionary path throughout finding the optimal 

solution for the effective frequency bandwidth. Three different types of selection approaches 

(roulette wheel, tournament, and random) are applied within the genetic operations. Since the 

desired case is to widen the effective frequency bandwidth, the objective functions are indeed 

fitness or utility functions in terms of maximization problem. 



18 A. Babaei et al./ Computational Engineering and Physical Modeling 5-4 (2022) 1-22 

Table 12 
Summary of the genetic algorithm for optimizing the effective frequency bandwidth. 

GA Selection type Optimal rm Optimal rs Initial solution 
Optimal 

solution 
Total NFE 

Roulette wheel 0.01 2.5 (63,2458.74) (360,2472.08) 3330 

Tournament 0.01 2.5 (63,2458.74) (426, 2472.08) 3330 

Random 0.01 2.5 (63,2466.45) (690, 2472.08) 3330 

Population 30 

Iteration 100 

 

Genetic algorithm properties of three different selection approaches are summarized in the above 

figure. According to the mentioned table and figure; optimal value for the oscillator mass is: 

𝑟𝑚 = 2.5 and that of the spring constant is: 𝑟𝑠 = 0.01. the genetic algorithm is executed for 3330 

number of function evaluations (NFEs). The algorithm initiated with 30 candidate solutions 

which also conveys the number of populations in each generation. The maximum number of 

iterations per each evolution is set to 100. Roulette wheel reaches the optimal solution in the 

least computational effort and is the most cost-effective selection method. Random selection 

initiates with a better initial solution but evolves through the longest computations 

comparatively. Tournament launches with the same initial guess as the roulette wheel but 

requires more computation time to find the optimal solutions. In short, the roulette wheel catches 

the optimal solution in the most cost-effective evolutionary path. As the final note, it is evident 

that roulette wheel shows more efficiency as it evolves with less genetic jumps (evolutions), 

tournament operates with medium genetic operational jumps and random traces a more 

complicated evolutionary track with several genetic operations. It is also good to note that since 

the nature of genetic algorithm is based on random initiation, disparate results in terms of cost-

effectiveness of the evolutions may appear in next running efforts. After finding the optimal 

solution via soft computing algorithms, the soundness of the adopted technique is to be assessed. 

To do so, the optimal design parameter values will be taken for the analytical-numerical solution 

which is found as a closed-form expression in Eq. (43). So, for such optimal mass and stiffness 

ratios, the voltage frequency response function (FRF) is to be obtained and compared against 

several randomly-chosen case studies. Such a comparison is expected to certify the fact that the 

effective frequency bandwidth of the optimal solution is the most widened bandwidth. To find 

the voltage FRF, following steps are to be accomplished: using the nominated optimal values, 

one needs to plot the nonlinear transcendental characteristic equation to estimate the initial 

guesses. Such initial guesses will be utilized in the VPASOLVE algorithm to numerically solve 

the mentioned equation and to find the eigenvalues: 

Table 13 
Eigenvalues of the cantilever-oscillator-spring system using numerical method and for optimal case 

𝒓𝒔 𝒓𝒎 𝝀𝟏𝑳 𝝀𝟐𝑳 𝝀𝟑𝑳 

0.01 2.5 0.251277483823365 1.87661935315381 1.87661935315381 

 

Next, the voltage FRF factors and the function values are found using the obtained eigenvalues. 
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2.5. Evaluation of the soft computing technique using analytical-numerical solution 

The above figure depicts the voltage FRF for 9 case studies along with the reference case (pure 

cantilever, [22]). Oscillator mass and spring constants are chosen randomly. It is evident that the 

effective (operational) frequency bandwidth of the optimal solution is wider than any other cases 

shown in black line. In other words, this figure approves the authenticity and correctness of the 

ANFIS regressor system consolidated with the genetic algorithm in optimizing the bandwidth. 

Besides, findings reveal that the weak (soft) spring and the heavy oscillator contribute to the 

most widened energy harvester. This fact is observable in blue and yellow lines where the heavy 

oscillator inertia effects has widened the bandwidth via the soft spring. Current model is also 

verified against the benchmark in [22] showing high level of accuracy. 

 
Fig. 10. Voltage FRF for different values of osccilator mass and spring constant values agasint the optimal 

value. 

3. Discussion 

Widening the effective or operational frequency bandwidth of piezoelectric vibration-based 

energy harvesters (PVEH) is vital as to cover more resonances and generate more electric power. 

Several approaches to maximize the effective frequency bandwidth has been proposed mostly 

based on the dynamic magnifier designs which is comprised of a tuning mass with rigid support 

and attached to the tip end of the cantilever. Considering the elastic support instead of the rigid 

support has never been studied before. In this paper, for the first time the attached mass is 

elastically connected to the cantilever via a spring. Such a subsystem of spring-oscillator renders 

the restoring force and inertia effects to the dynamic and electrical behavior of the cantilever. 

Such impact reinforces and develops the amount of harvested voltage as well as widening the 

operational frequency bandwidth. To take the most advantage of such a novel subsystem 

integration, values of the oscillator mass and spring stiffness are optimized to yield the most 

widened operational frequency bandwidth to harvest the maximum amount of electric energy 

from a given vibration energy. For the optimization, soft computing technique is used. The 
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proposed technique including: fuzzy logic, neural networks, and genetic optimization; is 

evaluated by analytical-numerical analysis. In the numerical-analytical section, extended 

Hamilton’s principle is used to derive the electromechanical equations of: the beam, electric 

circuit, and oscillator. Due to the new type of integration and the subsequent new boundary 

condition, new resonance frequency is observed which can be adjusted by oscillator mass or 

spring constant. To optimize the energy harvester, bandwidth among the first and third 

resonances is considered as the effective frequency bandwidth and the objective (fitness/utility) 

function. Even though; closed-form expression for the voltage frequency response function 

(FRF) is analytically and numerically obtained, optimization algorithm requires a regressor 

model to estimate the utility function values per each iteration throughout the evolution. The 

reason for this is: the voltage function encompasses parameters that need to be found manually 

(i.e. guessing the initial guess to find the roots of the transcendental equation cannot be 

automated). Moreover, the mentioned function is computationally expensive. As a result, 

adaptive-neuro-fuzzy-inference-system (ANFIS) is utilized as a regressor to approximate the 

function values through genetic optimization. To train the neural network fuzzy regressor model, 

231 cases are studied using the analytical-numerical voltage function. Since the Takagi-Sugeno 

fuzzy system as a multiple-input-single-output (MISO) is used in ANFIS, and the nature of 

current problem which requires two outputs, two separate fuzzy inference systems (FISs) are 

designed and tuned using neural networks for the first and third resonances. Proper type and 

number of the membership functions is developed using test dataset root-mean-square-error 

(RMSE) as the criteria which led to a 64 and 49 fuzzy rules based on the Gaussian membership 

functions. Such FIS models are used throughout the genetic algorithm initiating with random 30 

candidate solutions and 100 iterations per evolution. Three different types of selection methods 

of roulette wheel, random, and tournament are used comparatively. All selection approaches 

yield identical optimal design parameter values (𝑟𝑠 = 0.01, 𝑟𝑚 = 2.5). As for the verification of 

soft computing results, optimal voltage FRF is manually obtained using the analytical-numerical 

closed-form function and compared with 8 random cases of mass and stiffness ratio values. 

Furthermore, current model is also evaluated by comparing against the benchmark results. 

Comparison with random case studies proves the successful frequency bandwidth widening of 

the optimal case. Besides, the optimal case significantly reinforces the amount of harnessed 

voltage. 

4. Conclusions 

In this paper, new model for piezoelectric vibration-based energy harvester is studied to 

specifically analyze the importance of attaching an oscillator to the tip of the cantilever via 

elastic support. Such a novel design for energy harvesters is proposed to address the drawback 

with conventional energy harvesters in which the amount of harvestable energy is not enough, 

and the effective frequency bandwidth is very narrow. Considering the mass of the oscillator and 

stiffness of the spring, soft computing technique is developed to capture the optimal value of the 

oscillator mass and spring stiffness to render the optimized energy harvester. The optimal case 

not only is the most widened energy harvester but also improves the amount of maximum 

harvestable voltage showing notable improvements in the performance of the PVEHs. This paper 
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discloses successful integration of oscillatory subsystem with conventional cantilever energy 

harvesters to improve the amount of generated electric energy. Moreover, adjustable parameters 

of such subsystems can be tuned using soft computing techniques to optimize the effective 

frequency bandwidth to further develop the performance of PVEH. Final points of the this paper 

can be summarized in the following section: 

Oscillator inertia and restoring forces of the spring, result in small resonance frequency which is 

very useful for low-frequency excitations 

Attaching the oscillator using spring, improves the harvested amount of energy with a constant 

given excitation up to 300%. 

Such improvement is extended into the widening of effective frequency bandwidth. 

Such a model, has complicated characteristic equation which is hard to be evaluated in the 

genetic optimization algorithms with high evaluation numbers. 

As a remedy, soft computing algorithms need to be developed to find the optimal values of 

oscillator mass and spring stiffness. 

Developing the energy harvester model along with soft computing techniques, can lead to 

optimized piezoelectric vibration-based energy harvester to improve the performance by 

increasing the harvestable amount of voltage and widening the effective frequency bandwidth. 
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