Modal Analysis of a Thin-Walled Box-Girder Bridge and Railway Track Using Finite Element Framework

Document Type : Original Article


1 Research Scholar, National Institute of Technology, Hamirpur, India

2 Master of Technology Student, National Institute of Technology, Hamirpur, India

3 Assistant Professor, National Institute of Technology, Hamirpur, India


Modal analysis has received widespread acceptance in past few decades for a wide range of applications. Bridges and buildings are two of the most popular structures that use this application in the context of civil engineering. The current study aims to apply finite element technique to estimate the free vibration characteristics of a railway track and a box-girder bridge. The curved bridge is numerically modeled using thin-walled box-beam finite elements that take into account torsional warping, distortion, and distortional warping, all of which are important characteristics of thin-walled box-girders. A commercially available finite element software ANSYS is used to simulate the railway track in three dimensions. The study is restricted to the initial design stage of a thin-walled box-girder bridge decks, in which a full three-dimensional finite element model is not required. For the thin-walled box-girder bridge, a MATLAB code has been built that yields the corresponding modal parameter results, whilst the modal parameters of the railway track system are acquired using ANSYS software.


Main Subjects

[1]      Heins CP, Oleinik JC. Curved box beam bridge analysis. Comput Struct 1976;6:65–73. doi:10.1016/0045-7949(76)90054-7.
[2]      Kermani B, Waldron P. Analysis of continuous box girder bridges including the effects of distortion. Comput Struct 1993;47:427–40. doi:10.1016/0045-7949(93)90238-9.
[3]      Prakoso PB. The basic concepts of modelling railway track systems using conventional and finite element methods. INFO-TEKNIK 2012;13:57–65.
[4]      Burrow MPN, Bowness D, Ghataora GS. A comparison of railway track foundation design methods. Proc Inst Mech Eng Part F J Rail Rapid Transit 2007;221:1–12. doi:10.1243/09544097JRRT58.
[5]      Nallasivam K. Response of Horizontally Curved Thin-Walled Box-Girder Bridge to Vehicular Loads 2006.
[6]      Ganesh Babu K, Sujatha C. Track Modulus Analysis of Railway Track System Using Finite Element Model. J Vib Control 2010;16:1559–74. doi:10.1177/1077546309341600.
[7]      Sadeghi J. Field investigation on vibration behavior of railway track systems 2010.
[8]      Nguyen K, GOICOLEA JM, GALBADON F. Dynamic Analysis of High Speed Railway Traffic Loads on Ballasted Track. Adv. Environ. Vib. Fifth Int. Symp. Environ. Vib. Chengdu, China, 2011.
[9]      Kaewunruen S, Remennikov A, Aikawa A, Sakai H. Free vibrations of interspersed railway track systems in three-dimensional space 2014.
[10]    Kaewunruen S, Remennikov AM. Investigation of free vibrations of voided concrete sleepers in railway track system. Proc Inst Mech Eng Part F J Rail Rapid Transit 2007;221:495–507. doi:10.1243/09544097JRRT141.
[11]     Lu M, McDowell GR. Discrete element modelling of railway ballast under triaxial conditions. Geomech Geoengin 2008;3:257–70. doi:10.1080/17486020802485289.
[12]    Shuber A, Hamood M, Jawad W. Performance of railway track system under harmonic loading by finite element method. MATEC Web Conf., vol. 162, EDP Sciences; 2018, p. 1043.
[13]    García AO. Numerical and experimental analysis of the vertical dynamic behavior of a railway track. 2014.
[14]    Feng H. 3D-models of railway track for dynamic analysis. 2011.
[15]    Le Pen L. Track behaviour: the importance of the sleeper to ballast interface. 2008.
[16]    Mukhopadhyay M, Sheikh AH. Large amplitude vibration of horizontally curved beams: a finite element approach. J Sound Vib 1995;180:239–51. doi:10.1006/jsvi.1995.0077.
[17]    Vlasov V. Beams TW Chapter V. Natl Sci Found Washington, DC n.d.
[18]    Noor AK, Peters JM, Min B-J. Mixed finite element models for free vibrations of thin-walled beams. Finite Elem Anal Des 1989;5:291–305. doi:10.1016/0168-874X(89)90009-7.
[19]    Panicker, Aswani M, Mathai A. Free vibration analysis on FRP bridges 2014.
[20]    Yoon K-Y, Kang Y-J, Choi Y-J, Park N-H. Free vibration analysis of horizontally curved steel I-girder bridges. Thin-Walled Struct 2005;43:679–99. doi:10.1016/j.tws.2004.07.020.
[21]    Snyder JM, Wilson JF. Free vibrations of continuous horizontally curved beams. J Sound Vib 1992;157:345–55. doi:10.1016/0022-460X(92)90686-R.
[22]    Tabba MM, Turkstra CJ. Free vibrations of curved box girders. J Sound Vib 1977;54:501–14. doi:10.1016/0022-460X(77)90608-3.
[23]    Memory TJ, Thambiratnam DP, Brameld GH. Free vibration analysis of bridges. Eng Struct 1995;17:705–13. doi:10.1016/0141-0296(95)00037-8.
[24]    Kou C, Benzley SE, Huang J, Firmage DA. Free Vibration Analysis of Curved Thin‐Walled Girder Bridges. J Struct Eng 1992;118:2890–910. doi:10.1061/(ASCE)0733-9445(1992)118:10(2890).
[25]    Tan G, Wang W, Jiao Y. Free vibration analysis of a cracked simply supported bridge considering bridge-vehicle interaction. J Vibroengineering 2016;18:3608–35.
[26]    Awall MR, Hayashikawa T, Humyra T, Zisan MB. Free vibration characteristics of horizontally curved continuous multi I-girder bridge. 3rd Int. Conf. Civ. Eng. Sustain. Dev., 2016, p. 730–6.
[27]    Yin H, Li Z, Hao X. Research on structural dynamic characteristics of continuous steel box girder-bridge with lager ratio of wide-span. ITM Web Conf., vol. 17, EDP Sciences; 2018, p. 3008.
[28]    Wodzinowski R, Sennah K, Afefy HM. Free vibration analysis of horizontally curved composite concrete-steel I-girder bridges. J Constr Steel Res 2018;140:47–61. doi:10.1016/j.jcsr.2017.10.011.
[29]    Verma V, Nallasivam K. One-dimensional finite element analysis of thin-walled box-girder bridge. Innov Infrastruct Solut 2020;5:51. doi:10.1007/s41062-020-00287-x.
[30]    Verma V, Nallasivam K. Free vibration behaviour of thin-walled concrete box-girder bridge using Perspex sheet experimental model. J Achiev Mater Manuf Eng 2021;2:56–76. doi:10.5604/01.3001.0015.2418.
[31]    Zhu Z, Zhang L, Zheng D, Cao G. Free vibration of horizontally curved thin-walled beams with rectangular hollow sections considering two compatible displacement fields. Mech Based Des Struct Mach 2016;44:354–71. doi:10.1080/15397734.2015.1075410.
[32]    Gupta T, Kumar M. Flexural response of skew-curved concrete box-girder bridges. Eng Struct 2018;163:358–72. doi:10.1016/j.engstruct.2018.02.063.
[33]    Hamza BA, Radhi AR, Al-Madhlom Q. Effect of (B/D) ratio on ultimate load capacity for horizontally curved box steel beam under out of plane concentrated load. Eng Sci Technol an Int J 2019;22:533–7. doi:10.1016/j.jestch.2018.09.007.
[34]    Tsiptsis IN, Sapountzaki OE. Analysis of composite bridges with intermediate diaphragms & assessment of design guidelines. Comput Struct 2020;234:106252. doi:10.1016/j.compstruc.2020.106252.
[35]    Agarwal P, Pal P, Mehta PK. Parametric study on skew-curved RC box-girder bridges. Structures 2020;28:380–8. doi:10.1016/j.istruc.2020.08.025.
[36]    Tsiptsis IN, Sapountzakis EJ. Isogeometric analysis for the dynamic problem of curved structures including warping effects. Mech Based Des Struct Mach 2018;46:66–84. doi:10.1080/15397734.2016.1275974.