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The focus of this study is to investigate the applicability of 

Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial 

Neural Network (ANN), and Multiple Linear Regression 

(MLR) in modeling the compressive strength of Recycled Brick 

Aggregate Concrete (RBAC). A comparative study on the 

application of the aforementioned models is developed based on 

statistical tools such as coefficient of determination, mean 

absolute error, root mean squared error, and some others, and 

the application potential of each of these models is investigated. 

To study the effects of RBAC factors on the performance of 

representative data-driven models, the Sensitivity Analysis (SA) 

method is used. The findings revealed that ANN with R
2
 value 

of 0.9102 has a great application potential in predicting the 

compressive strength of concrete. In the absence of ANN, 

ANFIS with R
2
 value of 0.8538 is also an excellent substitute 

for predictions. MLR was shown to be less effective than the 

preceding models and is only recommended for preliminary 

estimations. In addition, Subsequent sensitivity analysis on the 

database indicates the reliability of the prediction models have a 

strong correlation to the number of input parameters. The 

application of ANN and ANFIS as a precursor to traditional 

methods can eliminate the need for old-style tests, thus, 

constituting a significant reduction in time and expense needed 

for design and/or repairs. 
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Nomenclature  

Adaptive Neuro-Fuzzy Inference System ANFIS 

Artificial Neural Network ANN 

Multiple Linear Regression MLR 

Recycled Brick Aggregate Concrete RBAC 

Sensitivity Analysis  SA 

Recycled Aggregate Concrete RAC 

Coefficient of Determination R
2
 

Nash-Sutcliffe Efficiency  NSE 

Mean Absolute Error MAE 

Mean Absolute Percentage Error MAPE 

Root Mean Squared Error RMSE 

Fine Clay Tile FCT 

Coarse Clay Tile CCT 

Fine Clay Brick FCB 

Coarse Clay Brick CCB 

Fine Natural Aggregate FNA 

Coarse Natural Aggregate CNA 

 

1. Introduction 

One of the issues the civil engineering industry is facing nowadays is the use of great amount of 

unsustainable materials in construction projects. Concrete is the most widely used material in 

civil engineering projects, and the use of recycled materials in it as a parameter of mix design 

can significantly reduce the amount of unsustainability in this industry. Crushed clay bricks and 

clay roof tiles are impressively valued, since they are environmentally friendly and can be used 

as an alternative to natural aggregates in the concrete mix design of concrete [1]. Subsequently, 

RBAC is an innovative, sustainable, and notable material with advanced properties that invites 

scientists to more explorations. 

In order to find out the application scopes of recycled materials on mechanical properties of 

concrete, several scientists in the field have conducted quite a few studies. Debib and Kenai 2008 

[1] have outlined that using coarse and fine crushed bricks would result in a 20% to 30% 

reduction in compressive strength of concrete, depending on the degree of substitution. Khademi 

et al. 2016 [2] have declared the usefulness of machine learning models in simulating the 

compressive strength of recycled aggregate concrete (RAC) constituting of 14 different 

dimensional and non-dimensional factors. The quality of concrete is directly related to the value 

of its compressive strength, and therefore, it is important to keep the compressive strength of 

concrete high up to some level. This has been the concept of research performed by Cachim 2009 

[3], in which they have stated that using crushed bricks instead of natural aggregates up to 15%, 

would have no loss in compressive strength of concrete, and therefore, the concrete quality 

would be kept in good condition. They have also claimed that increasing the crushed bricks up to 

30%, would result in a 20% reduction in the mechanical properties of concrete. Comparison of 
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compressive strength of RAC and normal aggregate concrete at early ages by different 

researchers [4–9] have shown that the RAC would have lower compressive strength compared to 

the other one. In other words, the performance of concrete generated with recycled aggregate is 

not as high quality as concrete produced with normal aggregate, stating by the fact that the water 

absorption of recycled aggregate is higher than the one to the normal gravel, which would 

directly affect the compressive strength of concrete. Poon and Chan 2007 [10] have compared 

the crushed brick aggregates and normal river aggregates in terms of the level of their grain 

hardness, and have declared that the concrete with the recycled brick aggregate has a lower 

compressive strength compared to the latter. It is worth noting that the concrete yet has adequate 

strength to respond to applied loads in different conditions, with the adjoined advantage of 

having lower density amounts, making it high standards where the self-weight is in the 

application. Poon and Chen 2007 [11] have also reported the existence of correlation between the 

amount of crushed brick aggregate, and the compressive strength and modulus of elasticity of 

concrete. They have stated that usage of 20% of fine crushed brick aggregate would result in 

reduction of 18% in the values of compressive strength and modulus of elasticity. In accordance 

with the aforesaid, overall use of recycled aggregate, more specifically crushed brick aggregates 

in concrete, as a parameter of mix design, would diminish the compressive strength of concrete. 

On the other hand, these type of recycled mixtures could still be efficient in certain applications, 

due to their lower density compared to concrete with normal mixtures. The relationship between 

the compressive strength of concrete and its mix design parameters cannot be expressed through 

one unique mathematical formula, and there is a need for more advanced optimization models to 

do so. 

The application of machine learning models for predicting civil engineering variables is broadly 

gaining popularity, because of their capability to express complex non-linear correlations. 

Sadrmomtazi et al. 2013 [12] have efficiently used the application of ANN and ANFIS models in 

predicting the strength of EPS lightweight concrete. Yuan et al. 2014 [13] have efficaciously 

estimated the compressive strength of concrete by developing genetic based algorithm and 

ANFIS models. In addition, Khademi et. al. [14] have performed research on concrete properties, 

and have fruitfully determined its 28 days compressive strength using ANN and ANFIS models. 

Ahmadi-Nedushan 2012 [15] have used the application of both ANFIS and optimal nonlinear 

regression models in determining the elastic modulus of normal and high strength concrete. 

However, there are only few studies available with the focus on the application of machine 

learning models in predicting the compressive strength of recycled aggregate concrete. In the 

research performed by Topcu and Saridemir 2008 [16], the ANN technique was used to 

determine the compressive strength and splitting tensile strengths of recycled aggregate concrete 

containing silica fume. Duan et al. 2013 [17] have used novel materials like paper, wood, tiles, 

natural stones, clay bricks, soft soils, etc. in their mix design, and fruitfully estimated the 

compressive strength of recycled aggregate concrete. Predicting the compressive strength of 

concrete containing red ceramic and other recycled materials for all ages of 3, 7, 28, and 91 days 

is the scope of the study performed by Dantas et al. 2013 [18], in which the aim was successfully 

achieved using the ANN techniques. Swapnasarit et al. 2020 [19] have also successfully used 

adaptive neuro-fuzzy inference system to predict the FRP shear contribution for wrapped shear 

deficient RC beams. Naderpour et al. 2018 [20] have used the artificial neural network to predict 
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the shear resistance of concrete beams reinforced by FRP bars. Ahmadi et al. 2017 [21] have 

achieved a reliable modeling using ANN method for determining the compressive strength of 

circular steel-confined concrete. 

2. Significance of the study 

In keeping with the above-mentioned, the great need for predicting the compressive strength of 

recycled brick aggregate concrete using progressed machine learning techniques is taken into 

considerations. In this study, the potential application of different soft computing models, i.e., 

Adaptive Neuro Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), and 

Multiple Linear Regression (MLR) are inspected for determining the compressive strength of 

recycled brick aggregate concrete based on elements of mix design. A database gathered from 

147 experimental tests of RBAC is processed by these data-driven models. The performance of 

each of these machine-learning techniques is investigated, and the effect of mixture elements is 

studied using the Sensitivity Analysis (SA) technique. 

3. Experimental database 

Although several studies have been performed on recycled aggregate concrete, scientists have 

not yet been able to find any specific mathematical procedures for determining the compressive 

strength of concrete [6]. Besides, traditional methods of evaluating the compressive strength of 

concrete are usually both time consuming and costly. This study seeks to identify any 

correlations between the mix design components and the compressive strength of RBAC using 

the collected experimental data. 

The total of 147 data collected from different studies construct our database in this study, shown 

in Table 1. 

Table 1 

RBAC Experimental Database List Used in This Study. 

Author 
Year 

Published 

Number of 

Specimens 
Type of Aggregate 

Reference 

Number 

Milicevic 2011 62 Crushed Brick and Tile 8 

Debieb & Kenai 2008 12 Recycled Brick and Limestone 1 

Khalaf & DeVenny 2004 9 Crushed Brick 4 

Rühl & Atkinson 1999 2 Recycled Brick 5 

Khatib 2005 5 Recycled Brick 7 

Cachim 2009 10 Recycled Brick 3 

Poon et all -I 2007 3 Recycled Brick and Tile 9 

Poon et all -II 2007 4 Recycled Brick and Tile 17 

Topçu & Canbaz 2007 18 Crushed Brick 18 

Alibdo et all 2017 22 Crushed Clay Brick 19 
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Not all the samples have all the mix design parameters, and as a result, only the specimens 

having all the parameters are used for the purposed of this study. The database, including both 

the input and output parameters are shown in Table 2. 

Table 2 

Database Used in This Study. 

Sample 

Number 

Sample 

Label 

Input data 

Output data 

Cemen

t (kg) 

W/C 

Rati

o 

recycled aggregate Natural 

Aggregate Clay Tile Clay Brick 

Fine Coarse Fine Coarse Fine Coarse 

CT 0-

4 (%) 

CT 4-

16 (%) 

CB 0-4 

(%) 

CB 4-16 

(%) 

NA 0-

4 (%) 

NA 4-16 

(%) 

Compressive 

Strength 

(MPa) 

1 1 400 0.5 0 0 0 25 100 75 10.95 

2 2 400 0.5 0 0 50 25 50 75 23.5 

3 3 400 0.5 0 50 0 25 100 25 8.7 

4 4 400 0.5 0 50 50 25 50 25 16.6 

5 5 400 0.5 50 0 0 25 50 75 22.4 

6 6 400 0.5 50 0 50 25 0 75 16.84 

7 7 400 0.5 50 50 0 25 50 25 18.8 

8 8 400 0.5 50 50 50 25 0 25 9.6 

9 9 300 0.5 25 25 0 0 75 75 15.5 

10 10 300 0.5 25 25 0 50 75 25 15.27 

11 11 300 0.5 25 25 50 0 25 75 20 

12 12 300 0.5 25 25 50 50 25 25 10.84 

13 13 500 0.5 25 25 0 0 75 75 54.5 

14 14 500 0.5 25 25 0 50 75 25 28.4 

15 15 500 0.5 25 25 50 0 25 75 45.2 

16 16 500 0.5 25 25 50 50 25 25 25.4 

17 17 400 0.4 25 0 25 0 50 100 61.75 

18 18 400 0.4 25 0 25 50 50 50 23.07 

19 19 400 0.4 25 50 25 0 50 50 23.32 

20 20 400 0.4 25 50 25 50 50 0 14.83 

21 21 400 0.6 25 0 25 0 50 100 26 

22 22 400 0.6 25 0 25 50 50 50 21.13 

23 23 400 0.6 25 50 25 0 50 50 27.53 

24 24 400 0.6 25 50 25 50 50 0 16.74 

25 25 300 0.4 0 25 25 25 75 50 46.43 

26 26 300 0.4 50 25 25 25 25 50 21.33 

27 27 300 0.6 0 25 25 25 75 50 17.25 

28 28 300 0.6 50 25 25 25 25 50 13.05 

29 29 500 0.4 0 25 25 25 75 50 41.33 

30 30 500 0.4 50 25 25 25 25 50 46 

31 31 500 0.6 0 25 25 25 75 50 43.75 

32 32 500 0.6 50 25 25 25 25 50 33.15 

33 33 400 0.5 0 25 25 0 75 75 9.97 

34 34 400 0.5 0 25 25 50 75 25 24.43 

35 35 400 0.5 50 25 25 0 25 75 34.8 

36 36 400 0.5 50 25 25 50 25 25 42.24 

37 37 400 0.5 0 25 25 0 75 75 37.6 

38 38 400 0.5 0 25 25 50 75 25 22.4 

39 39 400 0.5 50 25 25 0 25 75 32 

40 40 400 0.5 50 25 25 50 25 25 16.82 

41 41 300 0.5 25 0 25 25 50 75 21 

42 42 300 0.5 25 50 25 25 50 25 23.97 

43 43 300 0.5 25 0 25 25 50 75 18.04 

44 44 300 0.5 25 50 25 25 50 25 9.04 
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45 45 500 0.5 25 0 25 25 50 75 29.8 

46 46 500 0.5 25 50 25 25 50 25 26.13 

47 47 500 0.5 25 0 25 25 50 75 32.13 

48 48 500 0.5 25 50 25 25 50 25 40.3 

49 49 400 0.4 25 25 0 25 75 50 43.8 

50 50 400 0.4 25 25 50 25 25 50 44.8 

51 51 400 0.4 25 25 0 25 75 50 33 

52 52 400 0.4 25 25 50 25 25 50 15.34 

53 53 400 0.6 25 25 0 25 75 50 20.65 

54 54 400 0.6 25 25 50 25 25 50 25.16 

55 55 400 0.6 25 25 0 25 75 50 47.75 

56 56 400 0.6 25 25 50 25 25 50 27.97 

57 57 400 0.5 25 25 25 25 50 50 19.28 

58 58 400 0.5 25 25 25 25 50 50 28.05 

59 59 400 0.5 25 25 25 25 50 50 20.7 

60 60 400 0.5 25 25 25 25 50 50 23.08 

61 61 400 0.5 25 25 25 25 50 50 22.53 

62 62 400 0.5 25 25 25 25 50 50 26.15 

63 C0/0 350 0.61 0 0 0 0 100 100 30.62 

64 C0/25 350 0.69 0 0 25 0 75 100 28.21 

65 C0/50 350 0.77 0 0 50 0 50 100 26.73 

66 C0/75 350 0.85 0 0 75 0 25 100 25.82 

67 C0/100 350 0.93 0 0 100 0 0 100 22.35 

68 C50/50 350 0.75 0 0 50 50 50 50 21.51 

69 C100/100 350 0.89 0 0 100 100 0 0 18.26 

70 C100/100
+ 350 0.86 0 0 100 100 0 0 21.23 

71 C75/25 350 0.66 0 0 25 75 75 25 21.25 

72 C100/50 350 0.72 0 0 50 100 50 0 20.73 

73 C25/75 350 0.85 0 0 75 25 25 75 23.13 

74 C50/100 350 1.08 0 0 50 100 50 0 19.56 

75 M1 G 350.35 0.55 0 0 0 0 100 100 45.7 

76 M1 O 329.47 0.55 0 0 0 100 100 0 37.6 

77 M1 O+ 345.95 0.55 0 0 0 100 100 0 46.7 

78 M2 G 498.64 0.4 0 0 0 0 100 100 66.8 

79 M2 O 453.13 0.4 0 0 0 100 100 0 53.8 

80 M2 O+ 480.63 0.4 0 0 0 100 100 0 66.7 

81 M3 G 418.55 0.43 0 0 0 0 100 100 42.7 

82 M3 O 384.27 0.43 0 0 0 100 100 0 38.8 

83 M3 O+ 402.35 0.43 0 0 0 100 100 0 44.2 

84 NZ 320 0.55 0 0 0 0 100 100 35.39 

85 ZI 320 0.55 0 0 0 100 100 0 32.99 

86 control 325 0.5 0 0 0 0 100 100 46.7 

87 CB 25 319 0.5 0 0 25 0 75 100 39.2 

88 CB 50 314 0.5 0 0 50 0 50 100 37.7 

89 CB 75 307 0.5 0 0 75 0 25 100 36.1 

90 CB 100 303 0.5 0 0 100 0 0 100 33.2 

91 NN 45 400 0.45 0 0 0 0 100 100 36.2 

92 NA 45 400 0.45 0 0 0 15 100 85 32.1 

93 NB 45 400 0.45 0 0 0 15 100 85 38.5 

94 AA 45 400 0.45 0 0 0 30 100 70 27.6 

95 BB 45 400 0.45 0 0 0 30 100 70 32.3 

96 NN 50 400 0.5 0 0 0 0 100 100 30.5 

97 NA 50 400 0.5 0 0 0 15 100 85 29.4 

98 NB 50 400 0.5 0 0 0 15 100 85 32.3 

99 AA 50 400 0.5 0 0 0 30 100 70 24.5 

100 BB 50 400 0.5 0 0 0 30 100 70 29 

101 Mix 1 410 0.55 0 0 0 0 100 100 53.8 

102 Mix 2 410 0.55 0 0 20 0 80 100 47.2 
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103 Mix 3 410 0.55 20 0 0 0 80 100 45.5 

104 control 526.76 0.41 0 0 100 100 0 0 80.5 

105 10 T 489.76 0.49 10 10 0 0 90 90 65.6 

106 5T5B 491.49 0.49 5 5 5 5 90 90 62.4 

107 4B4G2T 493.98 0.49 2 2 8 8 90 90 66.2 

108 K300_0 300 0.63 0 0 0 0 100 100 21.63 

109 K300_50 300 0.63 50 50 0 0 50 50 15 

110 K300_100 300 0.63 100 100 0 0 0 0 14.23 

111 K350_0 350 0.54 0 0 0 0 100 100 27.15 

112 K350_50 350 0.54 50 50 0 0 50 50 27.95 

113 K350_100 350 0.54 100 100 0 0 0 0 19.81 

114 K400_0 400 0.48 0 0 0 0 100 100 36.5 

115 K400_50 400 0.48 50 50 0 0 50 50 30.12 

116 K400_100 400 0.48 100 100 0 0 0 0 22.16 

117 I300_0 300 0.63 0 0 0 0 100 100 26.32 

118 I300_50 300 0.63 50 50 0 0 50 50 25.71 

119 I300_100 300 0.63 100 100 0 0 0 0 15.13 

120 I350_0 350 0.54 0 0 0 0 100 100 36.12 

121 I350_50 350 0.54 50 50 0 0 50 50 27.36 

122 I350_100 350 0.54 100 100 0 0 0 0 21.71 

123 I400_0 400 0.48 0 0 0 0 100 100 36.23 

124 I400_50 400 0.48 50 50 0 0 50 50 34.12 

125 I400_100 400 0.48 100 100 0 0 0 0 31.65 

126 I_1 350 0.5 0 0 0 0 100 100 33.6 

127 I_2 350 0.5 0 0 25 0 75 100 36.5 

128 I_3 350 0.5 0 0 50 0 50 100 34.6 

129 I_4 350 0.5 0 0 75 0 25 100 32.1 

130 I_5 350 0.5 0 0 100 0 0 100 27.6 

131 I_6 350 0.5 0 0 0 25 100 75 34.2 

132 I_7 350 0.5 0 0 0 50 100 50 33.6 

133 I_8 350 0.5 0 0 0 75 100 25 25.8 

134 I_9 350 0.5 0 0 0 100 100 0 22.3 

135 I_10 350 0.5 0 0 50 50 50 50 29.6 

136 I_11 350 0.5 0 0 100 100 0 0 23.8 

137 II_14 250 0.7 0 0 0 0 100 100 22.5 

138 II_15 250 0.7 0 0 25 0 75 100 23.4 

139 II_16 250 0.7 0 0 50 0 50 100 21.9 

140 II_17 250 0.7 0 0 75 0 25 100 23.1 

141 II_18 250 0.7 0 0 100 0 0 100 15.9 

142 II_19 250 0.7 0 0 0 25 100 75 22.3 

143 II_20 250 0.7 0 0 0 50 100 50 22.1 

144 II_21 250 0.7 0 0 0 75 100 25 18.6 

145 II_22 250 0.7 0 0 0 100 100 0 16.2 

146 II_23 250 0.7 0 0 50 50 50 50 22.3 

147 II_24 250 0.7 0 0 100 100 0 0 15.5 

 

The following eight (8) mix design parameters were selected as input variables in this study: (1) 

Cement, (2) W/C, (3) Fine clay tile, (4) Coarse clay tile, (5) Fine clay brick, (6) Coarse clay 

brick, (7) Fine natural Aggregate, and (8) Coarse natural aggregate. Furthermore, 28 days 

compressive strength of concrete is selected as the output variable in this investigation. It is 

worth mentioning that the aggregate partition was divided into two categorizations of fine and 

coarse aggregate. The fine aggregate included the aggregates between 0 to 4 mm, and the coarse 

aggregate included the ones between 4 to 16 mm. The characteristics of input and output 

elements are more clearly shown in Table 3. 
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Table 3 

Range of Input and Output Parameters. 

Type Element Minimum Value Maximum Value Average Value 

Input Cement (kg) 250 526.76 374.17 

Input W/C ratio 0.4 4.08 0.54 

Input CT 0–4 (%) 0 100 16.92 

Input CT 4–16 (%) 0 100 16.78 

Input CB 0–4 (%) 0 100 23.35 

Input CB 4–16 (%) 0 100 26.48 

Input NA 0–4 (%) 0 100 59.73 

Input NA 4–16 (%) 0 100 56.73 

Output Compressive Strength (MPa) 8.7 80.5 29.81 

 

The coarse aggregate in sample construction of this study did not use any of the mix design 

water, due to the assumption that the coarse aggregate should be fully saturated, and as a result, 

these coarse aggregates were soaked in water for 24 hours prior to using them in the mix design 

procedure. On the other hand, fine brick aggregates could not be fully soaked in water, and 

therefore, higher water content was needed for mix designs containing these fine brick 

aggregates. All other scientists used the effective water/cement ratio expressed as the amount of 

available water to react with the cement in the mix design. 

4. Statistical performance measures 

Five different statistical performance measures were used to determine the effectiveness and 

prediction accuracies of all the studied soft computing models: (1) Coefficient of Determination 

(R
2
), (2) Nash-Sutcliffe Efficiency (NSE), (3) Mean Absolute Error (MAE), (4) Root Mean 

Squared Error (RMSE), and (5) Mean Absolute Percentage Error (MAPE). The explanation and 

formula of each are explained below [22,23]: 

The coefficient of determination (R
2
) is interpreted as the proportion of the variance in the 

dependent variable that is predictable from the independent variable, shown in Equation (1). 

𝑅2 =
[∑ (𝑦𝑖

𝑛
𝑖=1 −�̅�)(�̂�𝑖−�̅̂�)]2

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1 ∑ (�̂�𝑖−�̅̂�)2𝑛

𝑖=1

 (1) 

The Nash-Sutcliffe Efficiency (NSE) corresponds to a perfect match of modeled discharge to the 

observed data, shown in Equation (2). 

𝐸 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

 (2) 

The Mean Absolute Error (MAE), as the name illustrates, is simply the mean of the absolute 

errors. The absolute error is the absolute value of the difference between the estimated value and 

actual value, shown in Equation (3). 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑖 − �̂�𝑖|

𝑁
𝑖=1  (3) 
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The Root Mean Squared Error (RMSE), is a frequently used measure of the differences between 

sample and population values predicted by a model or an estimator and the values actually 

observed, shown in Equation (4). 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)2𝑁

𝑖=1  (4) 

The Mean Absolute Percentage Error (MAPE) is one of the most frequently used measures of 

prediction accuracy, shown in Equation (5). 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝑦𝑖−�̂�𝑖

𝑦𝑖
|𝑁

𝑖=1  (5) 

In all cases, “𝑦𝑖" is the experimental strength of "i
th

” specimen, "�̅�" is the averaged experimental 

strength, “�̂�𝑖” is the calculated compressive strength of "i
th

” th specimen, and "�̅̂�" is the averaged 

calculated compressive strength. 

Lower values of MAE, RMSE, and MAPE, and higher values of R
2 

and NSE imply the better 

efficiency of the prediction models. 

5. Data-driven models 

Most of the soft computing models, also called estimation models (or estimators), comprise of 

three steps of training, validation (check) and test. However, some data-driven models, MLR, for 

instance, might exclude the validation step. The training stage helps the model learn from a set of 

training examples. Generally, the main purpose of training step is to help model generate outputs 

as close as possible to target values, which can be done only by minimizing the error function in 

this step. Validation, the step acting independently from the training set, is used to construct the 

model. Finally, the accuracy of the machine learning algorithm is evaluated using the test step. 

The data-driven models used in this study are Adaptive Neuro-Fuzzy Inference System (ANFIS), 

Artificial Neural Network (ANN), and Multiple Linear Regression (MLR), which their structure 

and performance are explained in details in the following. 

5.1. Adaptive neuro-fuzzy inference system (ANFIS) 

An Adaptive neuro-fuzzy inference system (ANFIS) is based on Takagi-Sugeno fuzzy inference 

system (FIS) and its initial application goes back to early 1190s [24,25]. This technique is 

famous for determining the nonlinear functions with the help of both neural networks and fuzzy 

logic methodologies. The resultant outcome of fuzzy model is purely the weighted average of 

each rule’s output. 

The fuzzy reasoning mechanism of ANFIS model considering two fuzzy if-then rules for a first-

order Sugeno fuzzy model is stated as [14,22]: 

Rule 1: IF x is A1 and y is B1, THEN f1=p1x+q1y+r1. 

Rule 2: IF x is A2 and y is B2, THEN f2=p2 x+q2 y+r2. 
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Where {𝑝𝑖, 𝑞𝑖, 𝑟𝑖} are the parameters of the ith rule. Ai and Bi are the linguistic labels and are 

represented by fuzzy sets shown in Figure 1 [2,26]. 

 
Fig. 1. The Sugeno Fuzzy Model. 

The structure of ANFIS model consists of five layers, which behave differently from each other; 

yet, the nodes of the same layer act similarly. The architecture of ANFIS is shown in Figure 2. 

 
Fig. 2. Architecture of ANFIS Model. 

These five (5) different layers are identified in the following [2,26]: 

(1) Layer 1: This layer is entitled fuzzification layer. Using the help of membership function at 

any node i in this layer, it is transformed to membership values, demonstrated in Equation (6) 

[2,26]: 

𝑂𝑖
1 = 𝜇𝐴𝑖

(𝑥) (6) 

In which 𝑥 is the input of node i, and Ai is the linguistic label linked to this node function. 

(2) Layer 2: Any node in this layer multiplies the incoming signals and directs the outcomes out. 

In other words, each specific node existing in this layer is capable of determining the firing 

power of each rule. The example for this layer is shown in Equation (7) [2,26]: 
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𝑤𝑖 = 𝜇𝐴𝑖
(𝑦) × 𝜇𝐵𝑖

(𝑦)   ,      𝑖 = 1,2 (7) 

(3) Layer 3: In order to normalize the membership values, this layer is the best place to do so. 

The ith node in this layer calculates the ratio of the ith rule’s firing strength to the sum of all 

rule’s firing strength, shown in Equation (8) [2,26]: 

�̅�𝑖 =
𝑤𝑖

(𝑤1+𝑤2)
   , 𝑖 = 1,2 (8) 

(4) Layer 4: In order to calculated the relationship between the input and output parameters, layer 

four, also called the adaptive layer, would be used. The related formula is shown in Equation (9) 

[2,26]: 

𝑂𝑖
4 = �̅�𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) (9) 

Where �̅�𝑖 is the output resulted from layer 3, and {𝑝𝑖, 𝑞𝑖, 𝑟𝑖} is the parameter set. 

(5) Layer 5: This layer is also called the de-fuzzification layer. The signal node in this layer is a 

circle node labeled ∑ that computed the overall output as the sum of all input signals shown in 

Equation (10) [2,26]: 

Oi
5 = ∑ w̅iƒ i =  

∑ wii  ƒ i

∑ wii   i   (10) 

5.2. Artificial neural network (ANN) 

In situations where simple estimators are not capable of solving the problems, the Artificial 

Neural Network is a good substitute to respond to those complex problems. The multi-layer 

backpropagation network is the most popular neural network paradigm which is repeatedly 

operated for well-organized generalization competence [27]. Artificial Neural Network is valued 

greatly, since it has the ability to be trained by examples, resulting this model to perform with 

great accuracy. Backpropagation neural networks normally is made of three layers of neurons, 

i.e.; (1) Input layer, (2) output layer, and (3) one or couple of hidden layers, shown in Figure (3) 

[6]. 

 
Fig. 3. Structure of Artificial Neural Network with 3 Layers. 
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The learning procedure is processed in the output layer, where the error between the network 

output values and desired outputs is determined, and next, propagated back to the network with 

updated weights. The whole training procedure is repeated up to the point where the network 

could get to its desired accuracy of the output values [28,29]. 

Mainly, ANN contains three stages of training, validation, and test; (1) In the training step the 

subset is trained and learned from examples, similar to what happens to human brains. The 

number of epochs is repeated, until the acknowledged accuracy of the model is reached, (2) The 

validation step would recognize how well the model is being trained, in addition to being capable 

of estimating other properties of the model, such as mean error for numerical predictors, 

classification errors, etc., and (3) The test step would be capable of verification of the 

performance of the constructed training subset [14]. 

Selecting the paramount number of hidden neurons significantly influences the accuracy of the 

final results, and might either cause overfitting or under-fitting of the estimation models. 

Specifically, the number of hidden neurons influences the stability of the ANN model strongly, 

i.e., choosing plenty of number of hidden neurons will lead to overfitting where ANN 

overestimates the complexity of the target problem, and vice versa. Accordingly, for a model to 

have steady generalization with the lowest possible prediction deviation, choosing proper 

number of hidden neurons greatly matters. As a result, researchers have proposed various 

empirical formulas for estimating the most optimal number of hidden neurons, some of which 

are shown in Table 4. 

Table 4 

Empirical Formulas for Determining Number of Hidden Neurons (NH). 

Number 
Name of First 

Author 
𝐍𝐇 

Year 

Published 
Reference 

1 Behfarnia 2Ni + 1 2017 25 

2 Nikoo 2Ni + 1 2015 26 

3 Sadowski 2Ni + 1 2017 27 

4 Sheela (4Ni
2 + 3)(Ni

2 − 8) 2013 28 

5 Li (√1 + 8n − 1)/2 1995 29 

6 Tamura N − 1 1997 30 

7 Fujita Klog‖PcZ‖ log S 1998 31 

8 Hunter 2n − 1 2012 32 

9 Ke 
(Nin + √Np)/L 

2008 33 

10 Zhang 2n /n + 1 2003 34 

11 Shibata √NiN0 2009 35 

𝐍𝐢 = 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐢𝐧𝐩𝐮𝐭 𝐧𝐞𝐮𝐫𝐨𝐧𝐬,  𝐍𝟎 = 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐨𝐮𝐭𝐩𝐮𝐭 𝐧𝐞𝐮𝐫𝐨𝐧𝐬 

 

In this study, all the aforementioned formulas where examined to find the most efficient formula 

for determining the number of hidden nodes in the hidden layer, and among all of them, (2Ni+1) 
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has been selected as the most practical one. Therefore, based on this formula, the number of 

hidden neurons in hidden layer of ANN model were determined as 17. In addition, in this 

research, eight (8) different parameters were selected as input variables which are: Cement, W/C, 

Fine clay tile, Coarse clay tile, Fine clay brick, Coarse clay brick, Fine natural Aggregate, Coarse 

natural aggregate. Also, the compressive strength of concrete is selected as the output variable, 

shown in Figure 4. 

 
Fig. 4. Structure of Artificial Neural Network, consisting of 8 input parameters, one output parameter, one 

input layer, one hidden layer, and one output layer. 

5.3. Multiple linear regression (MLR) 

Normally, regression models can be defined as the process of fitting models to data. “Linear 

Regression” is the term used for those models which their estimator functions are performing 

linearly. Additionally, “Multiple Linear Regression” is the term used for those models which two 

or more input variables are involved in the linear regression. In other words, in Multiple Linear 

Regression (MLR), the relationship between two or more input variables is evaluated by fitting a 

linear regression to observed data. The general form of a multiple linear regression model is 

given in Equation (11), shown below [2]: 

Ŷ= a0 + ∑ aj
m
j=1 Xj (11) 

Where Ŷ is the model’s output, Xj ‘s are the independent input variables to the model, and 

a0, a1, a2, … , am are partial regression coefficients. 

The elements are trained in such a way that the resulting outputs of the training data-set and the 

model are as close as possible to each other. Respectively, just one optimization model would be 

employed in which the sum of the squares of the vertical deviations from each data point to the 

regression equation would be minimized. For instance, if a data point fully lays on the fitted line, 

it would result in the zero amount of the vertical deviation. The MLR is used in this research to 

find out the correlation between mix design parameters and compressive strength of concrete. 
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6. Efficiency comparison of estimation models 

6.1. Adaptive neuro-fuzzy inference system (ANFIS) 

For ANFIS modeling, out of total of 147 case studies, 103 cases (i.e. 75% of all) are selected for 

training step, 22 case studies (i.e. 15% of all) were selected for check step, and 22 case studies 

(i.e. 15% of all) were selected for test step, shown in Table 5. 

Table 5 

Distribution of Data into three subsets of Training, Check (Validation), and Test steps. 

 Training Check (Validation) Test 

Percent 75% 15% 15% 

Amount 103 22 22 

 

Matlab software is used for our ANFIS modeling purposes in this study [30]. To generate the FIS 

in Matlab, the Sub Clustering method has been used, the hybrid method has been selected as 

train FIS optimization method, and the number of epochs has been chosen as 20. Eight (8) 

parameters of Cement, W/C, Fine clay tile, Coarse clay tile, Fine clay brick, Coarse clay brick, 

Fine natural Aggregate, Coarse natural aggregate were selected as input variables, and 

compressive strength of concrete was selected as output variable. The structure of ANFIS in 

MATLAB software is as shown in Figure 5. 

 
Fig. 5. Structure of ANFIS Model in Matlab Software. 

Figure 6 shows the application of ANFIS modeling in Matlab for estimating the correlation 

between the measured and predicted values of compressive strength of concrete. According to 

the results, ANFIS with R
2
 value of 0.8538 is accepted to be a reliable model for estimating the 

compressive strength of concrete. 
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Fig. 6. Relationship between Measured and Predicted Compressive Strengths of RBAC using ANFIS 

Modeling. 

The performance of ANFIS model in predicting the compressive strength of RBAC based on R
2
, 

E, MAE, RMSE, and MAPE Values are as shown in Table 6. 

Table 6 

R
2
, E, MAE, RMSE, and MAPE Values of ANFIS Model. 

 R
2
 E MAE 

RMSE 

(Mpa) 
MAPE (%) 

Value 0.8538 0.8531 3.8438 5.1486 12.7678 

 

According to Table 6, ANFIS model is a capable model for estimating the 28 days compressive 

strength of RBA concrete. 

6.2. Artificial neural network (ANN) 

6.2.1. Predicting the compressive strength of concrete using ANN 

The ANN model in this study is comprised of eight (8) neurons in the input layer, and one neuron 

in the output layer. The number of nodes in the hidden layer, as discussed previously, is chosen 

as 17, to ensure good accuracy of the model. In order to guarantee a good generalization under 

ANN processing, it is necessary to divide the data set into three categorizations of training, 

validation, and test. Therefore, 75% of data (i.e. 103 specimens) were selected for training step, 

15% of data (i.e. 22 specimens) were selected for validation step, and 15% of data (i.e. 22 

specimens) were selected for test step. The characteristics of ANN modeling is shown in Table 7, 

and the structure of ANN modeling in MATLAB is as shown in Figure 7. 
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Table 7 

Characteristics of proposed ANN model in Matlab software. 

Definition Characteristic in ANN Model 

Number of Input Variables 8 

Number of Hidden Nodes in Hidden Layer 17 

Number of Output Parameters 1 

Number of Hidden Layers 1 

Algorithm Levenberg-Marquardt 

Function for Hidden Nodes Sigmoidal Tangent 

Function for Output Layer Linear Activation 

 

 
Fig. 7. Structure of ANN modeling in Matlab software with 8 input parameters, 17 hidden neurons in the 

hidden layer, one output variable, one hidden layer, and one output layer. 

Figure 8 shows the correlation between measured and predicted compressive strength of studied 

specimens for the training step. According to this Figure, the training step of ANN model with R
2
 

value of 0.9060 is accepted as a capable step in training the data set. 

 
Fig. 8. Relationship between the Target and Output Values in the Training Step of ANN Model. 
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In addition, the relationship between the measured and predicted values of RBAC for test step is 

shown in Figure 9. 

 
Fig. 9. Relationship between the Measured and Predicted Values of RBA concrete for Test Step of ANN 

Model. 

Furthermore, the R
2
, E, MAPE, RMSE, and MAE values of test step is shown in Table 8. 

Table 8 

R
2
, E, MAE, RMSE, and MAPE Values of ANN Model. 

 R
2
 E MAE 

RMSE 

(Mpa) 
MAPE (%) 

Value 0.9102 0.8874 1.0629 4.5067 4.5232 

 

According to Table 8, ANN is a capable model in predicting the compressive strength of 

concrete. In addition, ANN with 17 hidden neurons is shown to be more capable than ANFIS 

model in estimating the compressive strength of RBAC. 

6.2.2. Investigating the effect of number of hidden neurons on accuracy of the ANN model 

As discussed earlier, choosing proper number of hidden neurons has direct impact on the 

prediction accuracy of the ANN model. In this study, different numbers of hidden neurons in the 

hidden layers are chosen and their influences on the accuracy of the model are investigated. The 

selected numbers of hidden neurons in the hidden layer are 5, 8, 12, 15, 17, 20, 24. The 

relationship between the target and output values of concrete in training step for all these various 

number of hidden neurons are shown in Figures 10 through 16. 
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Fig. 10. Relationship between Target and Output Values in Training Step of ANN Modeling with 5 

Hidden Neurons. 

 
Fig. 11. Relationship between Target and Output Values in Training Step of ANN Modeling with 8 

Hidden Neurons. 

 
Fig. 12. Relationship between Target and Output Values in Training Step of ANN Modeling with 12 

Hidden Neurons. 
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Fig. 13. Relationship between Target and Output Values in Training Step of ANN Modeling with 15 

Hidden Neurons. 

 
Fig. 14. Relationship between Target and Output Values in Training Step of ANN Modeling with 17 

Hidden Neurons. 

 
Fig. 15. Relationship between Target and Output Values in Training Step of ANN Modeling with 20 

Hidden Neurons. 
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Fig. 16. Relationship between Target and Output Values in Training Step of ANN Modeling with 24 

Hidden Neurons. 

In addition, the R Values for both the training and test steps are shown in Table 9. 

Table 9 

R Values of Training and Test Steps for Various Number of Hidden Neurons. 

Number of Hidden Neurons R
 
Value of Training Step R

 
Value of Test Step 

5 0.83608 0.85043 

8 0.86299 0.86451 

12 0.88330 0.89236 

15 0.89582 0.89785 

17 0.95186 0.95404 

20 0.85114 0.86443 

24 0.80823 0.82762 

 

According to Table 9, choosing 17 hidden neurons would result in having the best accuracy for 

both the training and test steps, and therefore, in order to approximate the number of hidden 

nodes in the hidden layer, the experimental formula of 2N+1 is shown to be a reliable and 

efficient equation. 

6.3. Multiple linear regression (MLR) 

In the MLR model, the data are divided into two groups of training and test. The proportions of 

training and test subsets are selected in consideration of the fact that the general structure of the 

model is built with respect to the training dataset. Subsequently, 85% of data (i.e. 125 specimens) 

were selected for training step, and 15% of data (i.e. 22 specimens) were selected for test step. 

Figure 17 shows the relationship between the measured and predicted compressive strength of 

concrete for MLR model for the test step. 
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Fig. 17. Relationship between the measured and predicted compressive strength of concrete for MLR 

model for test step. 

Furthermore, the R
2
, E, MAPE, RMSE, and MAE values of test step is shown in Table 10. 

Table 10 

R
2
, E, MAE, RMSE, and MAPE Values of MLR Model. 

 R
2
 E MAE 

RMSE 

(Mpa) 
MAPE (%) 

Value 0.6497 0.6497 6.7995 7.9496 24.2315 

 

According to the table, MLR model did not present an acceptable level of accuracy in estimating 

the compressive strength of RBAC. This might be due to the fact that MLR performs based on 

the linear functionality and it is not as powerful in nonlinear correlations. As a result, due to the 

nonlinear relationship of the RBAC parameters, MLR is not considered as a capable prediction 

model in this case. 

6.4. Sensitivity analysis (SA) 

Sensitivity Analysis (SA) is defined as exploration of how much model output values are 

affected by the changes in the model input values. In this research, ANN and ANFIS model are 

used to perform the sensitivity analysis on dataset. The sensitivity analysis in this study is 

performed to explore the impact of number of input parameters on the output element. Different 

ANN and ANFIS Models have been constructed to study the effect of number of input 

parameters on the accuracy of the prediction models, shown in Table 11. 

Figure 18 and Figure 19 show the coefficient of determinations (R
2
 values) for all the presented 

models of Table 11. 
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Table 11 

Characteristics and number of input parameters for each modeled ANN and ANFIS models. 

Input Parameters 
Number of Input 

Parameters 

ANN 

Model 

ANFIS 

Model 

Cement, W/C 2 ANN1 ANFIS1 

Cement, W/C, FCT 3 ANN2 ANFIS2 

Cement, W/C, FCT, CCT 4 ANN3 ANFIS3 

Cement, W/C, FCT, CCT, FCB 5 ANN4 ANFIS4 

Cement, W/C, FCT, CCT, FCB, CCB 6 ANN5 ANFIS5 

Cement, W/C, FCT, CCT, FCB, CCB, FNA 7 ANN6 ANFIS6 

Cement, W/C, FCT, CCT, FCB, CCB, FNA , CNA 8 ANN7 ANFIS7 

 

 
Fig. 18. Coefficient of Determinations (R

2
 values) for ANN1, ANN2, ANN3, ANN4, ANN5, ANN6, and 

ANN7. 

 
Fig. 19. Coefficient of Determinations (R

2
 values) for ANFIS1, ANFIS2, ANFIS3, ANFIS4, ANFIS5, 

ANFIS6, and ANFIS7. 
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As illustrated above, an increase in the number of input parameters would lead to an increase in 

the coefficient of determination. Consequently, the more input variables one can collect, the 

more accurate the prediction that can be produced for the compressive strength of concrete. 

7. Conclusion 

(1) ANFIS Model with R
2 

Value of 0.8538 is shown to be a capable model for predicting the 

compressive strength of recycled brick aggregate concrete. In addition, E value of 0.8531, 

MAPE (%) value of 12.7678, RMSE value of 5.1486, and MAE value of 3.8438 confirm this 

result. 

(2) Artificial Neural Network Model with R
2 

value of 0.9102 as demonstrated is an excellent 

model for estimating the compressive strength of recycled brick aggregate concrete. 

Furthermore, E value of 0.8874, MAPE (%) value of 4.5232, RMSE value of 4.5067, and a MAE 

value of 1.0629 confirm this finding. 

(3) Although, both ANFIS and ANN models are shown to be capable in estimating the 

compressive strength of concrete. ANN with R
2 

value of 0.9102 is comparably more proficient 

than ANFIS with R
2
 value of 0.8538 at predicting the compressive strength of RBAC. 

(4) It is shown that both ANN and ANFIS models are better than the MLR model at predicting 

the compressive strength of concrete. However, the MLR model is still suitable for use in the 

preliminary mix design estimation of concrete, but for increased accuracy ANN and ANFIS 

models are ideal. 

(5) The number of hidden neurons in the hidden layer has significant and direct impact on 

accuracy of prediction models. In this study, the compressive strength of concrete was estimated 

for various number of hidden nodes in the hidden layer. The formula 2N+1 was determined to be 

the most efficient equation at approximating this parameter. 

(6) The Sensitivity Analysis (SA) on a dataset indicates that the number of input parameters are 

an important factor for increasing the accuracy of prediction models. In this study, it is shown 

that the more input parameters are present, the more accurate the result of the estimation model 

is. 
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