Influence of Jeffrey Nanofluid on Peristaltic Motion in an Inclined Endoscope

Document Type : Original Article


Department of Studies and Research in Mathematics, Karnatak University, Dharwad, 580003, India


Influence of Jeffrey nanofluid on Peristaltic motion in an Inclined Endoscope where the small intestine, large intestine, or other tracts of the human anatomy are in a cylindrical fashion. Hence in the present paper, we have considered the cylindrical coordinate system. In the gap between two coaxial inclined tubes, we have considered the incompressible non-Newtonian Jeffrey nanofluid. On the assumption of long wavelength and low Reynolds number, the governing equations were investigated. Using the Homotopy Perturbation Technique, coupled equations were solved with the temperature profile and nanoparticle phenomena. Using this present technique, the closed-form solutions of velocity, pressure raise, time-average volume flow rate have been calculated. The important result of this study is that the influence of Jeffrey nanofluid and inclination angle increases the velocity profile. Due to increase in the radius of the inner tube, the velocity of the fluid diminishes. The influence of different physical parameters on temperature, the concentration of nanoparticles, velocity, pressure rise,and frictional force of inner and outer tubes were graphically represented.


Google Scholar


Main Subjects

[1]     Ramesh K, Devakar M. Effect of endoscope on the peristaltic transport of a couple stress fluid with heat transfer: Application to biomedicine. Nonlinear Eng 2019;8:619–29.
[2]      Hayat T, Saleem A, Tanveer A, Alsaadi F. Numerical study for MHD peristaltic flow of Williamson nanofluid in an endoscope with partial slip and wall properties. Int J Heat Mass Transf 2017;114:1181–7. doi:10.1016/j.ijheatmasstransfer.2017.06.066.
[3]      Shahzadi I, Nadeem S, Rabiei F. Simultaneous effects of single wall carbon nanotube and effective variable viscosity for peristaltic flow through annulus having permeable walls. Results Phys 2017;7:667–76. doi:10.1016/j.rinp.2016.12.024.
[4]      Latham TW. Fluid motions in a peristaltic pump 1966.
[5]      Shapiro AH, Jaffrin MY, Weinberg SL. Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech 1969;37:799–825. doi:10.1017/S0022112069000899.
[6]      M.Y. J, A.H. S. Peristaltic pumping. Annu Rev Fluid 1971;3:13–36.
[7]      Hayat T, Rafiq M, Ahmad B. Soret and Dufour effects on MHD peristaltic flow of Jeffrey fluid in a rotating system with porous medium. PLoS One 2016;11:e0145525.
[8]      Asha SK, Sunita G. Effect of couple stress in peristaltic transport of blood flow by homotopy analysis method. AJST 2017;12:6958–64.
[9]      Asha SK, Sunitha G. Mixed convection peristaltic flow of a Eyring–Powell nanofluid with magnetic field in a non-uniform channel. JAMS 2018;2:332–4.
[10]    Asha SK, Sunitha G. Peristaltic transport of Eyring-Powell nanofluid in a non-uniform channel. Jordan J Math Stat 2019;12:431–53.
[11]     Raju KK, Devanathan R. Peristaltic motion of a non-Newtonian fluid. Rheol Acta 1972;11:170–8.
[12]    Hayat T, Ali N, Asghar S. An analysis of peristaltic transport for flow of a Jeffrey fluid. Acta Mech 2007;193:101–12. doi:10.1007/s00707-007-0468-2.
[13]    Elshehawey EF, Eldabe NT, Elghazy EM, Ebaid A. Peristaltic transport in an asymmetric channel through a porous medium. Appl Math Comput 2006;182:140–50. doi:10.1016/j.amc.2006.03.040.
[14]    Vajravelu K, Sreenadh S, Lakshminarayana P. The influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum. Commun Nonlinear Sci Numer Simul 2011;16:3107–25. doi:10.1016/j.cnsns.2010.11.001.
[15]    Jyothi KL, Devaki P, Sreenadh S. Pulsatile flow of a Jeffrey fluid in a circular tube having internal porous lining. Int J Math Arch 2013;4:75–82.
[16]    Akbar NS, Nadeem S, Lee C. Characteristics of Jeffrey fluid model for peristaltic flow of chyme in small intestine with magnetic field. Results Phys 2013;3:152–60. doi:10.1016/j.rinp.2013.08.006.
[17]    Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., IL (United States); 1995.
[18]    K AS, G S. Influence of thermal radiation on peristaltic blood flow of a Jeffrey fluid with double diffusion in the presence of gold nanoparticles. Informatics Med Unlocked 2019;17:100272. doi:10.1016/j.imu.2019.100272.
[19]    Prasad KM, Subadra N, Srinivas MAS. Peristaltic transport of a nanofluid in an inclined tube. Am J Comput Appl Math 2015;5:117–28.
[20]    Akbar NS, Nadeem S, Hayat T, Hendi AA. Peristaltic flow of a nanofluid in a non-uniform tube. Heat Mass Transf 2012;48:451–9. doi:10.1007/s00231-011-0892-7.
[21]    Akbar NS, Nadeem S. Endoscopic effects on peristaltic flow of a nanofluid. Commun Theor Phys 2011;56:761.
[22]    Nadeem S, Sadaf H, Akbar NS. Effects of nanoparticles on the peristaltic motion of tangent hyperbolic fluid model in an annulus. Alexandria Eng J 2015;54:843–51. doi:10.1016/j.aej.2015.07.003.
[23]    Hosseinzadeh K, Asadi A, Mogharrebi AR, Ermia Azari M, Ganji DD. Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect. J Therm Anal Calorim 2021;143:1081–95. doi:10.1007/s10973-020-09347-x.
[24]    Rostami AK, Hosseinzadeh K, Ganji DD. Hydrothermal analysis of ethylene glycol nanofluid in a porous enclosure with complex snowflake shaped inner wall. Waves in Random and Complex Media 2020:1–18. doi:10.1080/17455030.2020.1758358.
[25]    Hosseinzadeh K, Roghani S, Asadi A, Mogharrebi A, Ganji DD. Investigation of micropolar hybrid ferrofluid flow over a vertical plate by considering various base fluid and nanoparticle shape factor. Int J Numer Methods Heat Fluid Flow 2020;31:402–17. doi:10.1108/HFF-02-2020-0095.
[26]    Hosseinzadeh K, Moghaddam MAE, Asadi A, Mogharrebi AR, Ganji DD. Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation. Renew Energy 2020;154:497–507. doi:10.1016/j.renene.2020.03.054.
[27]    Kuznetsov AV, Nield DA. Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 2010;49:243–7. doi:10.1016/j.ijthermalsci.2009.07.015.
[28]    Akbar NS, Nadeem S, Hayat T, Hendi AA. Peristaltic flow of a nanofluid with slip effects. Meccanica 2012;47:1283–94. doi:10.1007/s11012-011-9512-3.
[29]    He J-H. Homotopy perturbation method for solving boundary value problems. Phys Lett A 2006;350:87–8. doi:10.1016/j.physleta.2005.10.005.
[30]    He J-H. Application of homotopy perturbation method to nonlinear wave equations. Chaos, Solitons & Fractals 2005;26:695–700. doi:10.1016/j.chaos.2005.03.006.
[31]    He J-H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput Methods Appl Mech Eng 1998;167:57–68. doi:10.1016/S0045-7825(98)00108-X.
[32]    Soltanian F, Dehghan M, Karbassi SM. Solution of the differential algebraic equations via homotopy perturbation method and their engineering applications. Int J Comput Math 2010;87:1950–74. doi:10.1080/00207160802545908.
[33]    Nadeem S, Akbar NS, Hayat T, Hendi AA. Peristaltic flow of Walter’s B fluid in endoscope. Appl Math Mech 2011;32:689–700. doi:10.1007/s10483-011-1449-7.