Identifying the Amount of Heat Flux and Thermal Conduction through Fabrics with Appropriate Heat Equation

Document Type : Original Article

Authors

1 Department of Textile Engineering, Faculty of Science and Engineering, City University, Dhaka, Bangladesh

2 Department of Textile Machinery Design and Maintenance, Faculty of Science and Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh

3 Department of Fabric Engineering, Faculty of Textile Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh

Abstract

Heat equations such as heat flux and thermal conduction were applied in this paper so that these values were obtained during heat setting. Cotton spandex woven fabrics have the properties of stretch ability like stretch, growth, elasticity etc. Due to controlling such types of properties heat setting is mandatory. The values of heat flux and thermal conduction would be beneficial to heat application the fabrics more accurately. A heavy weight stretched woven fabric of twill weave was used in this research. The width of the fabric was 60 inch and had a thickness of 2.5 millimeter. Fabric was heated in a stenter machine with adjusted industrial settings. Heat flux values and thermal conduction values of the clothes were investigated using equations stated in this paper. Overheat can damage the fabrics drastically and all the comfort properties are also influenced seriously. Using heat flux equation and thermal conduction equation, fabrics are heated preciously and all these things are practically analyzed, examined and investigated in this research. This research is trial based and the findings are useful to the employees functioning in textile factories who are in duty of heat setting the cotton spandex woven fabrics and to controlling of their all comfort characteristics.

Highlights

Google Scholar

Keywords


[1]      Ngoc Anh LT, Dung LT. Optimal Clothing Layers of Thickness for Working in the High Temperature Environmental. Int J Adv Res Eng Technol 2020;11.
[2]      Gupta S. All weather clothing. TechnicalTextile.Net. A Fiber to Fashion Venture. Weekly Technical Textile Newsletter. Available At: https://www.technicaltextile.net/articles/all-weather-clothing-3288 2020.
[3]      Islam S, Md. Mominul Alam S, Akter S. Influence of thermal conduction on the stretching behavior of core spandex cellulosic fabrics. Mater Today Proc 2020. doi:10.1016/j.matpr.2020.07.682.
[4]      Gao Y, Zhu H, Zhang Y, Zhu G, Chai G. Effects of porosity and area density on upward flame spread characteristics over thin flax fabric. Text Res J 2020:004051752094774. doi:10.1177/0040517520947746.
[5]      Shariful Islam SM, Alam M, Akter S. Investigation of the color fastness properties of natural dyes on cotton fabrics. Fibers Text 2020;27.
[6]      Puszkarz AK, Machnowski W, Błasińska A. Modeling of thermal performance of multilayer protective clothing exposed to radiant heat. Heat Mass Transf 2020:1–9.
[7]      Islam S, Alam SMM, Ahmed S. Attaining Optimum Values of Colourfastness Properties of Sustainable Dyes on Cotton Fabrics. FIBRES Text East Eur 2020;28:110–7.
[8]      Liang Y, Gao X-W, Xu B-B, Cui M, Zheng B-J. A reduced-order modelling for real-time identification of damages in multi-layered composite materials. Inverse Probl Sci Eng 2021;29:73–94. doi:10.1080/17415977.2020.1775826.
[9]      Parvin F, Islam S, Urmy Z, Ahmed S. A study on the textile materials applied in human medical treatment. Eur J Physiother Rehabil Stud 2020;1.
[10]    S. I, Md. H, Md. A, S. A, B. S, Md. H. Identifying the Causes of the Spandex Breakage of Woven Garments and its Solutions. Adv Res Text Eng 2020;1:1–24.
[11]     El Alami K, Asbik M, Agalit H. Identification of natural rocks as storage materials in thermal energy storage (TES) system of concentrated solar power (CSP) plants – A review. Sol Energy Mater Sol Cells 2020;217:110599. doi:10.1016/j.solmat.2020.110599.
[12]    Islam S, Parvin F, Urmy Z, Ahmed S, Arifuzzaman M, Yasmin J, et al. A Study on the Human Health Benefits, Human Comfort Properties and Ecological Influences OF Natural Sustainable Textile Fibers. Eur J Physiother Rehabil Stud 2020;1.
[13]    François A, Ibos L, Feuillet V, Meulemans J. Estimation of the thermal resistance of a building wall with inverse techniques based on rapid active in situ measurements and white-box or ARX black-box models. Energy Build 2020;226:110346. doi:10.1016/j.enbuild.2020.110346.
[14]    Islam S, Jarin Y, Toufiqul A, Islam F, Rowshanuzzaman K. Identifying the strength properties of cotton polyester blended woven fabrics of different fibre content. Res J Mater Sci 2019;7:1–6.
[15]    Shen H, Xie K, Shi H, Yan X, Tu L, Xu Y, et al. Analysis of heat transfer characteristics in textiles and factors affecting thermal properties by modeling. Text Res J 2019;89:4681–90. doi:10.1177/0040517519842790.
[16]    Sheikh-Ahmad JY, Almaskari F, Hafeez F. Thermal aspects in machining CFRPs: effect of cutter type and cutting parameters. Int J Adv Manuf Technol 2019;100:2569–82. doi:10.1007/s00170-018-2881-1.
[17]    Joshi A, Psikuta A, Bueno M-A, Annaheim S, Rossi RM. Analytical clothing model for sensible heat transfer considering spatial heterogeneity. Int J Therm Sci 2019;145:105949. doi:10.1016/j.ijthermalsci.2019.05.005.
[18]    Shariful I, Shaharia A, Islam A. Relationship in between strength and polyester content percentage of cotton polyester blended woven fabrics. Int J Cloth Sci 2019;6:1–6.
[19]    Halaoua S, Romdhani Z, Jemni A. Effect of textile woven fabric parameters on its thermal properties. Ind Textila 2019;70:15–20.
[20]    S I, S. A. Investigation of the Mechanical Properties of Thermal Bonded Nonwoven Composite Produced of Blends with Sustainable Fibers. Adv Res Text Eng 2019;4:1039.
[21]    Greszta A, Krzemińska S, Okrasa M. Influence of Aging Factors on the Properties of Aerogels with Different Degrees of Granulation. Fibres Text East Eur 2019;27:50–8. doi:10.5604/01.3001.0013.1386.
[22]    Islam S, Nasif Chowdhury JY, Arifuzzaman FI, Hasan M, Khatun M. Detecting the Physical Properties of Thermal Bonded Nonwoven Fabrics. Trends Text Eng Fash Technol 2019;5:1–18.
[23]    Teni M, Krstić H, Kosiński P. Review and comparison of current experimental approaches for in-situ measurements of building walls thermal transmittance. Energy Build 2019;203:109417. doi:10.1016/j.enbuild.2019.109417.
[24]    S. I, N. T, T. I. Investigation of the change of the shrinkage properties in contradiction to the change of the composition of cotton polyester spandex denim fabrics. J Text Eng Fash Technol 2019;5:163–8.
[25]    Panda A, Kumar A, Munshi B, Mohapatra SS. The enhancement of dropwise and spray evaporative cooling by using extract of Reetha added water as a coolant. Thermochim Acta 2019;680:178379. doi:10.1016/j.tca.2019.178379.
[26]    Islam S, Yasmin J, Kanon R. Detecting the spandex injuries and therapies of stretched garments. J Text Eng Fash Technol 2019;5:170–5.
[27]    Huang F, Zheng Y, Li Z, Wang X, Wu H, Liu C. Optimization Design of Protective Clothing Thickness Based on Finite Difference. 2019 Chinese Control Conf., IEEE; 2019, p. 6851–4. doi:10.23919/ChiCC.2019.8865675.
[28]    Islam S, Alam SMM, Akter S. The consequences of temperature on the shrinkage properties of cotton spandex woven fabric. J Text Polym 2019;7:2–7.
[29]    Su Y, Li R, Song G, Xiang C, Li J. Effect of Fabric Deformation on Thermal Protective Performance of Clothing in a Cylindrical Configuration. Homel. Secur. Public Saf. Res. Appl. Stand., ASTM International; 2019.
[30]    Shariful Islam SM, Alam M, Akter S. Identifying the values of whiteness index, strength and weight of cotton spandex woven fabric in peroxide bleaching of different concentration. Fibers Text 2019;26:96–109.
[31]    Zhang Y, Tian W, Liu L, Cheng W, Wang W, Liew KM, et al. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chem Eng J 2019;372:1077–90. doi:10.1016/j.cej.2019.05.012.
[32]    Islam S. Attaining Optimum Strength of Cotton-Spandex Woven Fabric by Apposite Heat-Setting Temperature. J Inst Eng Ser C 2019;100:601–6. doi:10.1007/s40032-018-0478-y.
[33]    El Arabi SM, Fatima M. Measurement of Heat Transfer Rates of Polypropylene and Cotton Nonwoven Fabrics via Thermal Conduction. Gezira J Eng Appl Sci 2018;11.
[34]    S. I, SM. A, S. A. Identifying a suitable heat setting temperature to optimize the elastic performances of cotton spandex woven fabric. Res J Text Appar 2018.
[35]    Su Y, He J, Li J. A model of heat transfer in firefighting protective clothing during compression after radiant heat exposure. J Ind Text 2018;47:2128–52. doi:10.1177/1528083716644289.
[36]    Islam S, Alam SMM. Investigation of the acoustic properties of needle punched nonwoven produced of blend with sustainable fibers. Int J Cloth Sci Technol 2018.
[37]    Naeem J, Akcagun E, Mazari A, Havelka A, Kus Z. Analysis of thermal properties, water vapor resistance and radiant heat transmission through different combinations of firefighter protective clothing. Ind Textila 2018;69:458.
[38]    Islam S, Chowdhury S, Akter S. The experiential analysis of woven fabric for reproduction. J Text Sci Technol 2018;4:18.
[39]    Snoussi L, Ouerfelli N, Sharma KV, Vrinceanu N, Chamkha AJ, Guizani A. Numerical simulation of nanofluids for improved cooling efficiency in a 3D copper microchannel heat sink (MCHS). Phys Chem Liq 2018;56:311–31. doi:10.1080/00319104.2017.1336237.
[40]    Zhang N, Yuan Y, Cao X, Du Y, Zhang Z, Gui Y. Latent Heat Thermal Energy Storage Systems with Solid-Liquid Phase Change Materials: A Review. Adv Eng Mater 2018;20:1700753. doi:10.1002/adem.201700753.
[41]    Venkataraman M, Mishra R, Militky J, Behera BK. Modelling and simulation of heat transfer by convection in aerogel treated nonwovens. J Text Inst 2017;108:1442–53. doi:10.1080/00405000.2016.1255124.
[42]    Udayraj, Talukdar P, Das A, Alagirusamy R. Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: Effect of air gap orientation and body movement. Int J Heat Mass Transf 2017;108:271–91. doi:10.1016/j.ijheatmasstransfer.2016.12.016.
[43]    Chakraborty S, Kothari VK. Effect of moisture and water on thermal protective performance of multilayered fabric assemblies for firefighters. Indian J Fibre Text Res 2017;42:94–9.
[44]    Dong K, Liu K, Zhang Q, Gu B, Sun B. Experimental and numerical analyses on the thermal conductive behaviors of carbon fiber/epoxy plain woven composites. Int J Heat Mass Transf 2016;102:501–17. doi:10.1016/j.ijheatmasstransfer.2016.06.035.
[45]    Udayraj, Talukdar P, Das A, Alagirusamy R. Simultaneous estimation of thermal conductivity and specific heat of thermal protective fabrics using experimental data of high heat flux exposure. Appl Therm Eng 2016;107:785–96. doi:10.1016/j.applthermaleng.2016.07.051.
[46]    Xu P, Ma X, Zhao X, Fancey KS. Experimental investigation on performance of fabrics for indirect evaporative cooling applications. Build Environ 2016;110:104–14. doi:10.1016/j.buildenv.2016.10.003.
[47]    Mochnacki B, Ciesielski M. Sensitivity of transient temperature field in domain of forearm insulated by protective clothing with respect to perturbations of external boundary heat flux. Bull Polish Acad Sci Tech Sci 2016;64:591–8. doi:10.1515/bpasts-2016-0066.
[48]    Onofrei E, Petrusic S, Bedek G, Dupont D, Soulat D, Codau T-C. Study of heat transfer through multilayer protective clothing at low-level thermal radiation. J Ind Text 2015;45:222–38. doi:10.1177/1528083714529805.
[49]    Mandal S, Song G. Thermal sensors for performance evaluation of protective clothing against heat and fire: a review. Text Res J 2015;85:101–12. doi:10.1177/0040517514542864.
[50]    Walker R, Pavía S. Thermal performance of a selection of insulation materials suitable for historic buildings. Build Environ 2015;94:155–65. doi:10.1016/j.buildenv.2015.07.033.
[51]    Wang Y, Zhupanska OI. Lightning strike thermal damage model for glass fiber reinforced polymer matrix composites and its application to wind turbine blades. Compos Struct 2015;132:1182–91. doi:10.1016/j.compstruct.2015.07.027.
[52]    Miao SQ, Li HP, Chen G. Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks. J Therm Anal Calorim 2014;115:1057–63. doi:10.1007/s10973-013-3427-2.
[53]    Ziaei M, Ghane M. Thermal insulation property of spacer fabrics integrated by ceramic powder impregnated fabrics. J Ind Text 2013;43:20–33. doi:10.1177/1528083712446384.
[54]    Yen R, Chen C, Huang C, Chen P. Numerical study of anisotropic thermal conductivity fabrics with heating elements. Int J Numer Methods Heat Fluid Flow 2013;23:750–71. doi:10.1108/HFF-03-2011-0050.
[55]    Ghazy A, Bergstrom DJ. Numerical Simulation of Heat Transfer in Firefighters’ Protective Clothing with Multiple Air Gaps during Flash Fire Exposure. Numer Heat Transf Part A Appl 2012;61:569–93. doi:10.1080/10407782.2012.666932.
[56]    Zhu F, Li K. Numerical Modeling of Heat and Moisture Through Wet Cotton Fabric Using the Method of Chemical Thermodynamic Law Under Simulated Fire. Fire Technol 2011;47:801–19. doi:10.1007/s10694-010-0201-x.
[57]    Varshney RK, Kothari VK, Dhamija S. A study on thermophysiological comfort properties of fabrics in relation to constituent fibre fineness and cross-sectional shapes. J Text Inst 2010;101:495–505. doi:10.1080/00405000802542184.
[58]    Zhu F-L, Zhang W-Y. Modeling Heat Transfer for Heat-resistant Fabrics Considering Pyrolysis Effect under an External Heat Flux. J Fire Sci 2009;27:81–96. doi:10.1177/0734904108094960.