Improvement of Concrete Characterization Using Nanosilica

Document Type : Original Article


1 Graduate Research Assistant, Department of Civil and Environmental Engineering, Florida International University, United States

2 Department of Civil and Environmental Engineering, University of Nevada, Reno, United States of America

3 M.Sc. Graduated, K.N. Toosi University of Technology, Tehran, Iran


In recent years, different research works have been conducted to evaluate the addition of nanometer materials to concrete materials. In this paper, the influence of Nanosilica on compressive strength, abrasive strength, durability, and improvements in the micro-structure of concrete are discussed. The results showed that the compressive strength of concrete samples with Nanosilica and silica fume were higher than the compressive strength of other samples without nanometer materials in all ages, as well as increasing the dosage percentage of Nanosilica led to higher levels of compressive strength. In the mix designs with an equal dosage percentage, samples containing Nanosilica have shown a higher level of strength in comparison to samples containing silica fume. The application of Nanosilica in self-compacting concrete resulted in higher level of compressive strength, flexural strength, abrasive strength, elasticity module, ultrasonic waves permeability velocity (UPV), and lower water absorption compared to samples without Nanoparticles. Despite the evidences which show the improvement in mechanical characteristics of concretes with Nanosilica-particles, further developments for the applicability of Nanoparticles for improving the characteristics of concrete require the right knowledge and higher control over the effective mechanisms of Nanoparticles on concrete’s structure.


Google Scholar


Main Subjects

[1]     Shahrokhinasab E, Hosseinzadeh N, Monirabbasi A, Torkaman S. Performance of Image-Based Crack Detection Systems in Concrete Structures. J Soft Comput Civ Eng 2020;4:127–39. doi:10.22115/scce.2020.218984.1174.
[2]     Sanchez F, Sobolev K. Nanotechnology in concrete–a review. Constr Build Mater 2010;24:2060–71.
[3]     Chong KP, Garboczi EJ. Smart and designer structural material systems. Prog Struct Eng Mater 2002;4:417–30. doi:10.1002/pse.134.
[4]     Boushehri R, Hasanpour Estahbanati S, Ghasemi-Fare O. Controlling frost heaving in ballast railway tracks using low enthalpy geothermal energy. 2019.
[5]     Ramezanianpour AA, Zolfagharnasab A, Zadeh FB, Estahbanati SH, Boushehri R, Pourebrahimi MR, et al. Effect of supplementary cementing materials on concrete resistance against sulfuric acid attack. High Tech Concr Where Technol Eng Meet, Springer; 2018, p. 2290–8.
[6]     Jafari K, Rajabipour F. Performance of Impure Calcined Clay as a Pozzolan in Concrete. Transp Res Rec J Transp Res Board 2020:036119812095314. doi:10.1177/0361198120953140.
[7]     Javni I, Zhang W, Karajkov V, Petrovic ZS, Divjakovic V. Effect of Nano-and Micro-Silica Fillers on Polyurethane Foam Properties. J Cell Plast 2002;38:229–39. doi:10.1177/0021955X02038003139.
[8]     Senff L, Labrincha JA, Ferreira VM, Hotza D, Repette WL. Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr Build Mater 2009;23:2487–91. doi:10.1016/j.conbuildmat.2009.02.005.
[9]     Shih J-Y, Chang T-P, Hsiao T-C. Effect of nanosilica on characterization of Portland cement composite. Mater Sci Eng A 2006;424:266–74. doi:10.1016/j.msea.2006.03.010.
[10]    Ajay V, Rajeev C, Yadav RK. Effect of micro silica on the strength of concrete with ordinary Portland cement. Res J Eng Sci ISSN 2012;2278:9472.
[11]    Mondal P, Shah SP, Marks LD, Gaitero JJ. Comparative Study of the Effects of Microsilica and Nanosilica in Concrete. Transp Res Rec J Transp Res Board 2010;2141:6–9. doi:10.3141/2141-02.
[12]    Al-Mutairi N, Al-Rukaibi F, Bufarsan A. Effect of microsilica addition on compressive strength of rubberized concrete at elevated temperatures. J Mater Cycles Waste Manag 2010;12:41–9. doi:10.1007/s10163-009-0243-7.
[13]    Qing Y, Zenan Z, Deyu K, Rongshen C. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr Build Mater 2007;21:539–45. doi:10.1016/j.conbuildmat.2005.09.001.
[14]    Jo BW, Kim CH, Lim JH. Investigations on the development of powder concrete with nano-SiO2 particles. KSCE J Civ Eng 2007;11:37–42. doi:10.1007/BF02823370.
[15]    Singh LP, Goel A, Bhattachharyya SK, Ahalawat S, Sharma U, Mishra G. Effect of Morphology and Dispersibility of Silica Nanoparticles on the Mechanical Behaviour of Cement Mortar. Int J Concr Struct Mater 2015;9:207–17. doi:10.1007/s40069-015-0099-2.
[16]    Li Q, Gao X, Xu S. Multiple effects of nano-SiO2 and hybrid fibers on properties of high toughness fiber reinforced cementitious composites with high-volume fly ash. Cem Concr Compos 2016;72:201–12. doi:10.1016/j.cemconcomp.2016.05.011.
[17]    Ying J, Zhou B, Xiao J. Pore structure and chloride diffusivity of recycled aggregate concrete with nano-SiO2 and nano-TiO2. Constr Build Mater 2017;150:49–55. doi:10.1016/j.conbuildmat.2017.05.168.
[18]    Mohammed BS, Liew MS, Alaloul WS, Khed VC, Hoong CY, Adamu M. Properties of nano-silica modified pervious concrete. Case Stud Constr Mater 2018;8:409–22. doi:10.1016/j.cscm.2018.03.009.
[19]    Zhang B, Tan H, Shen W, Xu G, Ma B, Ji X. Nano-silica and silica fume modified cement mortar used as Surface Protection Material to enhance the impermeability. Cem Concr Compos 2018;92:7–17. doi:10.1016/j.cemconcomp.2018.05.012.
[20]    Liu M, Tan H, He X. Effects of nano-SiO2 on early strength and microstructure of steam-cured high volume fly ash cement system. Constr Build Mater 2019;194:350–9. doi:10.1016/j.conbuildmat.2018.10.214.
[21]    Liu R, Xiao H, Liu J, Guo S, Pei Y. Improving the microstructure of ITZ and reducing the permeability of concrete with various water/cement ratios using nano-silica. J Mater Sci 2019;54:444–56. doi:10.1007/s10853-018-2872-5.
[22]    Zhuang C, Chen Y. The effect of nano-SiO2 on concrete properties: a review. Nanotechnol Rev 2019;8:562–72.
[23]    Vahedi M, Ardestani R, Zahrai SM. Sensitivity Analysis of Tubular-Web Reduced Beam Section Connections Under Cyclic Loading. Int J Steel Struct 2021;21:100–17. doi:10.1007/s13296-020-00418-1.
[24]    He K, Chen Y, Xie W. Test on axial compression performance of nano-silica concrete-filled angle steel reinforced GFRP tubular column. Nanotechnol Rev 2019;8:523–38. doi:10.1515/ntrev-2019-0047.
[25]    Chitty FD, Freeman CJ, Garber DB. Joint Design Optimization for Accelerated Construction of Slab Beam Bridges. J Bridg Eng 2020;25:04020029. doi:10.1061/(ASCE)BE.1943-5592.0001561.
[26]    Chitty F, Freeman C, Garber D. Development of Longitudinal Joint Details for Florida Slab Beam Incorporating Ultra-High-Performance Concrete. 2018.
[27]    Chitty FD. Joint Demand in Slab Beam Bridges n.d.
[28]    Graybeal BA. Development of Non-Proprietary Ultra-High Performance Concrete for Use in the Highway Bridge Sector: TechBrief. United States. Federal Highway Administration; 2013.
[29]    Berry M, Snidarich R, Wood C. Development of non-proprietary ultra-high performance concrete. Montana. Dept. of Transportation. Research Programs; 2017.
[30]    Garber D, Shahrokhinasab E. Performance Comparison of In-Service, Full-Depth Precast Concrete Deck Panels to Cast-in-Place Decks. Accelerated Bridge Construction University Transportation Center (ABC-UTC); 2019.
[31]    Sharbatdar MK, Abbasi M, Fakharian P. Improving the Properties of Self-compacted Concrete with Using Combined Silica Fume and Metakaolin. Period Polytech Civ Eng 2020;64:535–44. doi:10.3311/PPci.11463.
[32]    Ghafari E, Arezoumandi M, Costa H, Júlio E. Influence of nano-silica addition on durability of UHPC. Constr Build Mater 2015;94:181–8. doi:10.1016/j.conbuildmat.2015.07.009.
[33]    Ghiasian M, Rossini M, Amendolara J, Haus B, Nolan S, Nanni A, et al. Test-driven design of an efficient and sustainable seawall structure. Coast Struct 2019 2019:1222–7.
[34]    Li H, Zhang M, Ou J. Abrasion resistance of concrete containing nano-particles for pavement. Wear 2006;260:1262–6. doi:10.1016/j.wear.2005.08.006.
[35]    Zhi-hong C. Differences of CECS 03∶ 88 and JTJ 053-94 in concrete strength assessment. Shanxi Archit n.d.;2004:14.
[36]    Sarajpoor S, Kavand A, Zogh P, Ghalandarzadeh A. Dynamic behavior of sand-rubber mixtures based on hollow cylinder tests. Constr Build Mater 2020;251:118948. doi:10.1016/j.conbuildmat.2020.118948.
[37]    Zahedi M, Ramezanianpour AA, Ramezanianpour AM. Evaluation of the mechanical properties and durability of cement mortars containing nanosilica and rice husk ash under chloride ion penetration. Constr Build Mater 2015;78:354–61. doi:10.1016/j.conbuildmat.2015.01.045.
[38]    Ramezanianpour AA, Zolfagharnasab A, Zadeh FB, Estahbanati SH, Boushehri R, Pourebrahimi MR, et al. Effect of Supplementary Cementing Materials on Concrete Resistance Against Sulfuric Acid Attack. High Tech Concr Where Technol Eng Meet, Cham: Springer International Publishing; 2018, p. 2290–8. doi:10.1007/978-3-319-59471-2_261.
[39]    Ghafari E, Costa H, Júlio E, Portugal A, Durães L. The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Mater Des 2014;59:1–9. doi:10.1016/j.matdes.2014.02.051.
[40]    Hosseinzadeh N, Ebead U, Nanni A, Suraneni P. Hydration, strength, and shrinkage of cementitious materials mixed with simulated desalination brine. Adv Civ Eng Mater 2019;8:31–43.
[41]    Hosseinzadeh N, Kosar K, Ramanthan S, Suraneni P. Operator-induced variability caused by hand mixing of cement paste—effects on fresh and hardened properties. Adv Civ Eng Mater 2019;8:435–50.
[42]    Quercia G, Spiesz P, Hüsken G, Brouwers HJH. SCC modification by use of amorphous nano-silica. Cem Concr Compos 2014;45:69–81. doi:10.1016/j.cemconcomp.2013.09.001.
[43]    Ghoddousi P, Abbasi AM, Shahrokhinasab E, Abedin M. Prediction of Plastic Shrinkage Cracking of Self-Compacting Concrete. Adv Civ Eng 2019;2019.
[44]    Ghaffary A, Moustafa MA. Synthesis of Repair Materials and Methods for Reinforced Concrete and Prestressed Bridge Girders. Materials (Basel) 2020;13:4079. doi:10.3390/ma13184079.
[45]    Naik TR, Singh SS, Hossain MM. Abrasion resistance of concrete as influenced by inclusion of fly ash. Cem Concr Res 1994;24:303–12. doi:10.1016/0008-8846(94)90056-6.
[46]    Naik TR, Singh SS, Hossain MM. Abrasion resistance of high-strength concrete made with class C fly ash. Mater J 1995;92:649–59.
[47]    Nazari A, Riahi S. The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete. Compos Part B Eng 2011;42:570–8. doi:10.1016/j.compositesb.2010.09.025.
[48]    Nazari A, Riahi S, Riahi S, Shamekhi SF, Khademno A. Benefits of Fe2O3 nanoparticles in concrete mixing matrix. J Am Sci 2010;6:102–6.
[49]    Li H, Xiao H, Yuan J, Ou J. Microstructure of cement mortar with nano-particles. Compos Part B Eng 2004;35:185–9. doi:10.1016/S1359-8368(03)00052-0.
[50]    Ji T, Mirzayee A, Zangeneh-Madar Z, Zangeneh-Madar E. Preliminary study on water infiltration of concrete containing nano-SiO2 and silicone. Int Congr Civ Eng, vol. 8, 2009, p. 40.
[51]    Li G. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem Concr Res 2004;34:1043–9. doi:10.1016/j.cemconres.2003.11.013.
[52]    Jo B-W, Kim C-H, Tae G, Park J-B. Characteristics of cement mortar with nano-SiO2 particles. Constr Build Mater 2007;21:1351–5. doi:10.1016/j.conbuildmat.2005.12.020.
[53]    Li H, Zhang M, Ou J. Flexural fatigue performance of concrete containing nano-particles for pavement. Int J Fatigue 2007;29:1292–301. doi:10.1016/j.ijfatigue.2006.10.004.
[54]    Ji T. Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem Concr Res 2005;35:1943–7. doi:10.1016/j.cemconres.2005.07.004.
[55]    Çevik A, Alzeebaree R, Humur G, Niş A, Gülşan ME. Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceram Int 2018;44:12253–64. doi:10.1016/j.ceramint.2018.04.009.
[56]    Azad E, Peik B, Abbasi B. A numerical simulation of thermo-mechanical behavior of a single fracture in porous rock. 52nd US Rock Mech Symp, American Rock Mechanics Association; 2018.
[57]    Xu J, Wang B, Zuo J. Modification effects of nanosilica on the interfacial transition zone in concrete: A multiscale approach. Cem Concr Compos 2017;81:1–10. doi:10.1016/j.cemconcomp.2017.04.003.
[58]    Li H, Xiao H, Ou J. A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem Concr Res 2004;34:435–8. doi:10.1016/j.cemconres.2003.08.025.
[59]    Saloma, Nasution A, Imran I, Abdullah M. Improvement of Concrete Durability by Nanomaterials. Procedia Eng 2015;125:608–12. doi:10.1016/j.proeng.2015.11.078.