Contribution of the Blast Furnace Slag on the Behavior of HPC in a Hydrochloric Environment

Document Type : Original Article

Authors

1 Research Unit, Materials, Processes and Environment, Boumerdes University, Algeria

2 Civil Engineering and Mechanical Engineering Materials Laboratory, IUT-Rennes, French

3 Department of Architecture, University of Algiers, Algeria

Abstract

Most mechanical properties and durability of cementitious materials are related to the performance of the hydrated cement that coats the granular skeleton. However, different mineral additions are currently used in concrete. They are used as addition or substitution to cement. The use of these supplementary cementitious materials provides to concrete a denser matrix that will be more resistant to aggressive environments such as sulphates, chlorides and other aggressive agents. In mixtures containing finely ground of slag, 15% of cement by weight was replaced with finely ground of slag of El-Hadjar (Algeria). The main objective of this study is to investigate the effect of curing in the hydrochloric environment by subjugating its granular effect on the performance of concrete. Density, compressive strength, concrete surface, internal microstructure and ultrasonic pulse velocity were investigated in this research. The damage mechanisms of concrete have been related to the development of the microstructure of the material. The degradations were observed using a scanning electron microscope (SEM) and quantified by x-ray diffraction (XRD). The microstructural study concerns both the surface layer and the internal structure of the samples. The results have shown that slag of El-Hadjar present a pozzolanic activity and hence it affects favorably the microstructure of the paste which becomes denser and less permeable.

Highlights

Google Scholar

Keywords

Main Subjects


[1]      Shahmansouri AA, Yazdani M, Ghanbari S, Akbarzadeh Bengar H, Jafari A, Farrokh Ghatte H. Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J Clean Prod 2021;279:123697. doi:10.1016/j.jclepro.2020.123697.
[2]      Escadeillas G. Les éco-matériaux dans la construction: enjeux et perspectives, Septième édition des Journées scientifiques du Regroupement francophone pour la recherche et la formation sur le béton,(RF) 2B. Toulouse, Fr 2006:19–20.
[3]      Shahmansouri AA, Akbarzadeh Bengar H, Jahani E. Predicting compressive strength and electrical resistivity of eco-friendly concrete containing natural zeolite via GEP algorithm. Constr Build Mater 2019;229:116883. doi:10.1016/j.conbuildmat.2019.116883.
[4]      Shahmansouri AA, Akbarzadeh Bengar H, Ghanbari S. Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method. J Build Eng 2020;31:101326. doi:10.1016/j.jobe.2020.101326.
[5]      Samet B, Chaabouni M. Characterization of the Tunisian blast-furnace slag and its application in the formulation of a cement. Cem Concr Res 2004;34:1153–9. doi:10.1016/j.cemconres.2003.12.021.
[6]      S. M, T. Y, H. F, K. K. Properties of concrete using blast-furnace slag cement type A with modified chemical composition. Cem Sci Concr Technol 2010;64:244–50. doi:10.14250/cement.64.244.
[7]      Hossein Rafiean A, Najafi Kani E, Haddad A. Mechanical and Durability Properties of Poorly Graded Sandy Soil Stabilized with Activated Slag. J Mater Civ Eng 2020;32:04019324. doi:10.1061/(ASCE)MT.1943-5533.0002990.
[8]      HASSOUNE M. Etude de la durabilité du béton au contact du milieu marin: effet du rapport E/C 2012.
[9]      Delmi M, Aît-Mokhtar A, Amiri O. Contribution à la modélisation des processus d’hydratation d’un matériau cimentaire. XXIème Rencontres Univ. Génie Civ., 2003, p. 243–50.
[10]    Bessa A, Bigas J-P, Gallias J-L. Evaluation de la contribution liante des additions minérales à la porosité, à la résistance en compression et à la durabilité des mortiers, 22ème rencontres universitaires de génie civil 2004. Google Sch n.d.:1–8.
[11]     Rezazadeh Eidgahee D, Rafiean AH, Haddad A. A Novel Formulation for the Compressive Strength of IBP-Based Geopolymer Stabilized Clayey Soils Using ANN and GMDH-NN Approaches. Iran J Sci Technol Trans Civ Eng 2020;44:219–29. doi:10.1007/s40996-019-00263-1.
[12]    S. L. Chemistry of Cement and concrete, fourth Edition by Peter C. Hewlett n.d.:241–289.
[13]    Hager I, Tracz T, ChoiƄska M, Mróz K. Effect of Cement Type on the Mechanical Behavior and Permeability of Concrete Subjected to High Temperatures. Materials (Basel) 2019;12:3021. doi:10.3390/ma12183021.
[14]    Huynh T-P, Ngo S-H, Hwang C-L. Physical-durable performance of concrete incorporating high loss on ignition-fly ash. IOP Conf. Ser. Mater. Sci. Eng., vol. 348, IOP Publishing; 2018, p. 12014.
[15]    Etman ZA, Ahmed TI. Effect of freezing-thawing on concrete behavior. Chall J Concr Res Lett 2018;9:21. doi:10.20528/cjcrl.2018.01.003.
[16]    Lemonis N, Tsakiridis PE, Katsiotis NS, Antiohos S, Papageorgiou D, Katsiotis MS, et al. Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan. Constr Build Mater 2015;81:130–9. doi:10.1016/j.conbuildmat.2015.02.046.
[17]    Dhaini F. Etude des interactions latex-ciment modèle: conséquences sur les propriétés rhéologiques 2014.
[18]    Lizarazo Marriaga J, Claisse P. The influence of the blast furnace slag replacement on chloride penetration in concrete. Ing e Investig 2011;31:38–47.
[19]    Lee G, Ling T-C, Wong Y-L, Poon C-S. Effects of crushed glass cullet sizes, casting methods and pozzolanic materials on ASR of concrete blocks. Constr Build Mater 2011;25:2611–8. doi:10.1016/j.conbuildmat.2010.12.008.
[20]    K. DW, M. G. On the application of thermodynamic modelling for the prediction of the hydrate assemblage formed by blended cements. Nord Miniseminar Oslo – Norway 15 – 16 Febr 2012.
[21]    Moesgaard M, Herfort D, Steenberg M, Kirkegaard LF, Yue Y. Physical performances of blended cements containing calcium aluminosilicate glass powder and limestone. Cem Concr Res 2011;41:359–64. doi:10.1016/j.cemconres.2010.12.005.
[22]    Vu QA. Evaluation du béton d’enrobage par acoustique non linéaire et ondes de surface 2016.
[23]    Autier C. Etude de l’adjuvantation de pâtes cimentaires par différents polycarboxylates: la mésostructure: un lien entre interactions organo-minérales et propriétés macroscopiques 2013.
[24]    Mages V. et Sarrazin J., Le béton, une solution pour la construction durable, Références / Lafarge, Rapport annuel. 2011.