[1] P.G. Partridge, The crystallography and deformation modes of hexagonal close-packed metals, Metall. Reviews 12 (1967), 169-194.
[2] P.A. Turner, C.N. Tomé, A study of residual stresses in Zircaloy-2 with rod texture, Acta metall. mater. 42 (1994), 4143-4153.
[3] R.A. Lebensohn, C.N. Tomé, A self-consistent anisotropic approch for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta metall. Mater. 41 (1993), 2611-2624.
[4] C.N. Tomé, R. A. Lebensohn and U.F. Kocks, 1991, A model for texture development dominated by deformation twinning: application to zirconium alloys, Acta Metall. Mater. 39 (1991), 2667-2680.
[5] S.-H. Choi, E.J. Shin, B.S. Seong, Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression, Acta Mater. 55 (2007) 4181-4192. Doi: 10.1016/j.actamat.2007.03.015
[6] S.-H. Choi, D.H. Kim, H.W. Lee, E.J. Shin, Simulation of texture evolution and macroscopic properties in Mg alloys using the crystal plasticity finite element method, Mater. Sci. Eng. A 527 (2010), 1151-1159. Doi: 10.1016/j.msea.2009.09.055
[7] H. Abdolvand, M.R. Daymond, Internal strain and texture development during twinning: Comparing neutron diffraction measurements with crystal plasticity finite-element approaches, Acta Mater. 60 (2012), 2240-2248. Doi: 10.1016/j.actamat.2012.01.016
[8] H. Qiao, M. R. Barnett, P. D. Wu, Modeling of twin formation, propagation and growth in a Mg single crystal based on crystal plasticity finite element method, Int. J. plasticity 86 (2016), 70-92. Doi: 10.1016/j.ijplas.2016.08.002
[9] H. Qiao, P. D. Wu, X. Q. Guo, S. R. Agnew, A new empirical equation for termination of twinning in magnesium alloys, Scripta Mater. 120 (2016) 71-75. Doi: 10.1016/j.scriptamat.2016.04.015
[10] H. Wang, P.D. Wu, J. Wang, C.N. Tomé, A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms, Int. J. Plast. 49 (2013), 36-52. Doi: 10.1016/j.ijplas.2013.02.016
[11] L.Y. Zhao, X.Q. Guo, A. Chapuis, Y.C. Xin, Q. Liu, P.D. Wu, Strain-Path Dependence of {10-12} Twinning in a Rolled Mg–3Al–1Zn Alloy: Influence of Twinning Model, Metall. and Mater. Trans. A 50A (2019) 118-131. Doi: 10.1007/s11661-018-4955-y
[12] H. Qiao, X.Q. Guo, S.G. Hong, P.D. Wu, Modeling of {10-12}-{10-12} secondary twinning in pre-compressed Mg alloy AZ31, J. Alloys Compd. 725 (2017) 96-107. Doi: 10.1016/j.jallcom.2017.07.133
[13] D.W. Brown, S.R. Agnew, M.A. M. Bourke, T. M. Holden, S.C. Vogel, C.N. Tomé, Internal strain and texture evolution during deformation twinning in magnesium, Mater. Sci. Eng. A 399 (2005), 1-12. Doi: 10.1016/j.msea.2005.02.016
[14] Y. Pei, A. Godfrey, J. Jiang, Y.B. Zhang, W. Liu, Q. Liu, Extension twin variant selection during uniaxial compression of a magnesium alloy, Mater. Sci. Eng. A 550 (2012), 138-145. Doi: 10.1016/j.msea.2012.04.046
[15] B. Wang, R. Xin, G. Huang, Q. Liu, Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression, Mater. Sci. Eng. A 534 (2012), 588-593. Doi: 10.1016/j.msea.2011.12.013
[16] C. Ma, A. Chapuis, X.Q. Guo, L.Y. Zhao, P.D. Wu, Q. Liu, Modeling the deformation behavior of a rolled Mg alloy with the EVPSC-TDT model, Materials Science & Engineering A 682 (2017) 332–340. Doi: 10.1016/j.msea.2016.11.027
[17] H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, C.N. Tomé, Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet, Int. J. Solids Struct. 47 (2010), 2905-2917. Doi: 10.1016/j.ijsolstr.2010.06.016
[18] K. Hazeli, J. Cuadra, P.A. Vanniamparambil, and A. Kontsos, In situ identification of twin-related bands near yielding in a magnesium alloy, Scr. Mater. 68 (2013), 83-86. Doi: 10.1016/j.scriptamat.2012.09.009
[19] M. R. Barnett, M.D. Nave, A. Ghaderi, Yield point elongation due to twinning in a magnesium alloy, Acta Mater. 60 (2012), 1433-1443. Doi: 10.1016/j.actamat.2011.11.022
[20] P.D. Wu, X.Q. Guo, H. Qiao, D.J. Lloyd, A constitutive model of twin nucleation, propagation and growth in magnesium crystals: Mater. Sci. Eng. A 625 (2015) 140-145. Doi: 10.1016/j.msea.2014.11.096
[21] M.R. Barnett, Twinning and the ductility of magnesium alloys Part I: “Tension” twins, Mater. Sci. Eng. A 464 (2007), 1-7. Doi: 10.1016/j.msea.2006.12.037
[22] S.-G. Hong, S.H. Park, and C.S. Lee, Role of {10–12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy, Acta Mater. 58 (2010) 5873-5885. Doi: 10.1016/j.actamat.2010.07.002
[23] M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi, Deformation twinning in AZ31: Influence on strain hardening and texture evolution: Acta Mater. 58 (2010) 6230-6242. Doi: 10.1016/j.actamat.2010.07.041
[24] Z.Q. Wang, A. Chapuis, Q. Liu, Simulation of mechanical behavior of AZ31 magnesium alloy during twin-dominated large plastic deformation, Trans. Nonferrous Met. Soc. China 25 (2015) 3595−3603. Doi: 10.1016/S1003-6326(15)64000-6
[25] X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, R.H. Wagoner, Hardening evolution of AZ31B Mg sheet, Int. J. Plasticity 23 (2007) 44–86. Doi: 10.1016/j.ijplas.2006.03.005
[26] H. Wang, P.D. Wu, C.N. Tomé, J. Wang, A constitutive model of twinning and detwinning for hexagonal close packed polycrystals, Materials Science and Engineering A 555 (2012) 93– 98. Doi: 10.1016/j.msea.2012.06.038
[27] A. Chapuis, Q. Liu, Simulations of texture evolution for HCP metals: Influence of the main slip systems, Comp. Mater. Sci. 97 (2015) 121–126. Doi: 10.1016/j.commatsci.2014.10.017
[28] M.R. Barnett, Twinning and the ductility of magnesium alloys Part II. “contraction” twins, Mater. Sci. Eng. A 464 (2007) 8–16. Doi: 10.1016/j.msea.2007.02.109
[29] É. Martin, L. Capolungo, L. Jiang, J.J. Jonas, Variant selection during secondary twinning in Mg–3%Al, Acta Mater. 58 (2010) 3970–3983. Doi: 10.1016/j.actamat.2010.03.027
[30] S.J. Mu, J.J. Jonas, G. Gottstein, Variant selection of primary, secondary and tertiary twins in a deformed Mg alloy, Acta Mater. 60 (2012) 2043–2053. Doi: 10.1016/j.actamat.2012.01.014