Lattice Boltzmann Simulation of Fluid Flow and Heat Transfer through Partially Filled Porous Media

Document Type : Original Article


1 Mathematics and Physics, North South University, Dhaka, Bangladesh

2 Department of Mathematics and Physics North South University, Dhaka-1229 Bangladesh

3 5Department of Engineering & Physical Sciences, La Trobe University, Melbourne, VIC 3086, Australia


The main aim of this work is to observe the fluid flow and heat transfer characteristics through porous media at the REV (Representative Elementary Volume) scale in an enclosed squared cavity using LBM (Lattice Boltzmann Method) instead of traditional FVM, FDM, or FEM. Results are generated by varying the porosity (e = 0.4, 0.6, 0.9), and other dimensionless variables: Rayleigh number (Ra = 103, 104, 105, 106), and Darcy number (Da =10-2, 10-3). The enclosed cavity was considered to be half-filled with pore materials, with horizontal porous layer and vertical porous layer, these two cases are studied for all the considered parameters. The influence of the dimensionless parameters as well as porosity on the fluid flow and heat transfer characteristics has been discussed in detail along with the influence of the placement of the pore material inside the cavity. In the end, it is observed form the results that the nature of the flow and rate of the heat transfer are affected significantly by the Ra values, Da values, and porosity level. The placement differences of the pore materials further shows differences in the fluid flow and heat transfer characteristics. A new and simpler forcing term for the porous media is used. This study can be useful while using a porous media in numerical designs and experimental designs. Fortran 90 is used for numerical simulations.


Google Scholar


Main Subjects

[1]     Douglas, Jr. J. Finite Difference Methods for Two-Phase Incompressible Flow in Porous Media. SIAM J Numer Anal 1983;20:681–96. doi:10.1137/0720046.
[2]     Kim J-G, Deo MD. Finite element, discrete-fracture model for multiphase flow in porous media. AIChE J 2000;46:1120–30. doi:10.1002/aic.690460604.
[3]     Jenny P, Lee SH, Tchelepi HA. Adaptive Multiscale Finite-Volume Method for Multiphase Flow and Transport in Porous Media. Multiscale Model Simul 2005;3:50–64. doi:10.1137/030600795.
[4]     Zarghami A, Ubertini S, Succi S. Finite volume formulation of thermal lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow 2014.
[5]     Radu FA, Nordbotten JM, Pop IS, Kumar K. A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media. J Comput Appl Math 2015;289:134–41.
[6]     Javandel I, Witherspoon PA. Application of the finite element method to transient flow in porous media. Soc Pet Eng J 1968;8:241–52.
[7]     Khoei AR, Hosseini N, Mohammadnejad T. Numerical modeling of two-phase fluid flow in deformable fractured porous media using the extended finite element method and an equivalent continuum model. Adv Water Resour 2016;94:510–28.
[8]     Balasubramanian K, Hayot F, Saam WF. Darcy’s law from lattice-gas hydrodynamics. Phys Rev A 1987;36:2248–53. doi:10.1103/PhysRevA.36.2248.
[9]     Rothman DH. Cellularā€automaton fluids: A model for flow in porous media. GEOPHYSICS 1988;53:509–18. doi:10.1190/1.1442482.
[10]    Mosthaf K, Helmig R, Or D. Modeling and analysis of evaporation processes from porous media on the REV scale. Water Resour Res 2014;50:1059–79. doi:10.1002/2013WR014442.
[11]    Guo Z, Zhao TS. Lattice Boltzmann model for incompressible flows through porous media. Phys Rev E 2002;66:036304. doi:10.1103/PhysRevE.66.036304.
[12]    Chen S, Doolen GD. LATTICE BOLTZMANN METHOD FOR FLUID FLOWS. Annu Rev Fluid Mech 1998;30:329–64. doi:10.1146/annurev.fluid.30.1.329.
[13]    Mohamad AA. Lattice Boltzmann Method. vol. 70. Springer; 2011.
[14]    Seta T, Takegoshi E, Okui K. Lattice Boltzmann simulation of natural convection in porous media. Math Comput Simul 2006;72:195–200. doi:10.1016/j.matcom.2006.05.013.
[15]    Whitaker S. The Forchheimer equation: A theoretical development. Transp Porous Media 1996;25:27–61. doi:10.1007/BF00141261.
[16]    Huang H, Ayoub JA. Applicability of the Forchheimer Equation for Non-Darcy Flow in Porous Media. SPE Annu. Tech. Conf. Exhib., Society of Petroleum Engineers; 2006. doi:10.2118/102715-MS.
[17]    Durlofsky L, Brady JF. Analysis of the Brinkman equation as a model for flow in porous media. Phys Fluids 1987;30:3329. doi:10.1063/1.866465.
[18]    Nishad CS, Chandra A, Karmakar T, Raja Sekhar GP. A non-primitive boundary element technique for modeling flow through non-deformable porous medium using Brinkman equation. Meccanica 2018;53:2333–52. doi:10.1007/s11012-018-0832-4.
[19]    Lauriat G, Prasad V. Non-Darcian effects on natural convection in a vertical porous enclosure. Int J Heat Mass Transf 1989;32:2135–48. doi:10.1016/0017-9310(89)90120-8.
[20]    Nithiarasu P, Seetharamu KN, Sundararajan T. Natural convective heat transfer in a fluid saturated variable porosity medium. Int J Heat Mass Transf 1997;40:3955–67. doi:10.1016/S0017-9310(97)00008-2.
[21]    Haghshenas A, Nasr MR, Rahimian MH. Numerical simulation of natural convection in an open-ended square cavity filled with porous medium by lattice Boltzmann method. Int Commun Heat Mass Transf 2010;37:1513–9. doi:10.1016/j.icheatmasstransfer.2010.08.006.
[22]    Tong TW, Subramanian E. Natural convection in rectangular enclosures partially filled with a porous medium. Int J Heat Fluid Flow 1986;7:3–10. doi:10.1016/0142-727X(86)90033-0.
[23]    Zhao CY, Dai LN, Tang GH, Qu ZG, Li ZY. Numerical study of natural convection in porous media (metals) using Lattice Boltzmann Method (LBM). Int J Heat Fluid Flow 2010;31:925–34. doi:10.1016/j.ijheatfluidflow.2010.06.001.
[24]    Yao S-G, Duan L-B, Ma Z-S, Jia X-W. The Study of Natural Convection Heat Transfer in a Partially Porous Cavity Based on LBM. Open Fuels Energy Sci J 2014;7:88–93. doi:10.2174/1876973X01407010088.
[25]    Kumar V, Rani A, Singh AK. Numerical solution of non-Darcian effects on natural convection in a rectangular inclined porous enclosure with heated walls, 2019, p. 020107. doi:10.1063/1.5135282.
[26]    Ameur H, Kamla Y, Sahel D. Numerical investigation of the cooling of shear thinning fluids in cylindrical horizontal ducts. Comput Eng Phys Model 2018;1:54–64.
[27]    Sobamowo GM, Jayesimi O, Waheed A. On the study of magnetohydrodynamic squeezing flow of nanofluid between two parallel plates embedded in a porous medium. Comput Eng Phys Model 2018;1:1–15.
[28]    Ergun S. Fluid flow through packed columns. Chem Eng Prog 1952;48:89–94.
[29]    Peng Y, Shu C, Chew YT. Simplified thermal lattice Boltzmann model for incompressible thermal flows. Phys Rev E 2003;68:026701. doi:10.1103/PhysRevE.68.026701.
[30]    Himika TA, Hasan M, Molla M. Lattice Boltzmann simulation of airflow and mixed convection in a general ward of hospital. J Comput Eng 2016;2016.
[31]    Hasan MF, Himika TA, Molla MM. Large-eddy simulation of airflow and heat transfer in a general ward of hospital, 2016, p. 050022. doi:10.1063/1.4958413.
[32]    Gao C, Xu R-N, Jiang P-X. Pore-scale numerical investigations of fluid flow in porous media using lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow 2015;25:1957–77. doi:10.1108/HFF-07-2014-0202.
[33]    Amine Moussaoui M, Jami M, Mezrhab A, Naji H. Computation of heat transfer and fluid flow in an obstructed channel using lattice Boltzmann method. Eng Comput 2010;27:106–16. doi:10.1108/02644401011008540.
[34]    Guo Z, Zhao TS. A LATTICE BOLTZMANN MODEL FOR CONVECTION HEAT TRANSFER IN POROUS MEDIA. Numer Heat Transf Part B Fundam 2005;47:157–77. doi:10.1080/10407790590883405.
[35]    Guo Y, Bennacer R, Shen S, Ameziani DE, Bouzidi M. Simulation of mixed convection in slender rectangular cavity with lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow 2010;20:130–48. doi:10.1108/09615531011008163.
[36]    Hasan M, Ahmed Himika T, Molla M. Lattice Boltzmann simulation of airflow and heat transfer in a model ward of a hospital. J Therm Sci Eng Appl 2017;9.
[37]    Vafai K. Handbook of porous media, Crc Press, 2015 n.d.