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Buckling study of single-stepped columns subjected to both 

intermediate and end axial loads are introduced in this paper. 

The column understudy is considered as two segments where 

the upper and the lower parts have different cross section 

moment of inertia or different material and subjected to 

intermediate load at the location of the cross section change 

beside the end load. All the classical end conditions of the 

studied column are considered in this paper as pinned ends, 

clamped ends, clamped-free ends and clamped-pinned ends. 

The analysis is developed using finite element method to 

study the effect of each parameter may be affect in the 

buckling loads. These parameters are i) ratio of the 

intermediate axial load to the end axial load, ii) the 

intermediate load location as a ratio to the column span and, 

iii) the ratio of flexural rigidity of lower segment to that of 

upper one. The obtained numerical results are introduced in 

many interaction curves to obtain the buckling loads for each 

end conditions considering the other parameters. A 

comparison between the obtained results and that of the 

available theoretical studies shows the accuracy and the 

simplicity of the present work to get the critical load. 
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Introduction 

The critical buckling load of columns and its behaviour is an important item in the different 

structures study. Earlier, Leonhard Euler obtained the critical buckling load for pinned ends 

column with uniform cross section which frequently termed as the Euler load. Columns with 

uniform cross section are not the most economical form to be stable against buckling. In many 

applications of the civil engineering, stepped columns may be required from the view of the 

economical design especially when the column subjected to intermediate and end axial loads. 

Examples to this loading case are crane columns in industrial buildings and columns supporting 

intermediate floors. The case of a two segment column with pinned ends compressed by end and 

intermediate axial forces was studied by Timoshenko and Gere [1]. Exact buckling loads for 

columns with uniform cross section under the effect of intermediate and end axial loads have 

been derived by C. M. Wang and I. M. Nazmul [2]. They divide the column to two segments and 

the differential equations for each segment are investigated and solved together to get the 

stability criterion. Wilson [3] used a finite difference scheme to represent the fourth order 

differential equation for the stepped column under end axial load only to get an approximate 

buckling load. Salama [4] introduced a theoretical analysis of the stability of stepped column 

under end and intermediate axial loads using the potential energy method considering pinned 

ends and clamped-free ends only. The buckling problem of two portions stepped column is 

developed by Pinarbasi and et. [5]. They solved the derived differential equations by using the 

variational iteration method (VIM). In this paper, stability study of two segment stepped columns 

under the effect of combined axial loads are developed using finite element method considering 

different combination of end conditions and the results are compared with other studies.  

2. Theoritical analysis 

2.1. Assumptions 

Consider a stepped column as shown in Figure (1-a) subjected to end axial load P1 at top end and 

an intermediate axial load P2 at a distance x = L from the bottom with the following 

assumptions:  

  
a) b) 

Fig. 1. a) Stepped column subjected to end and intermediate axial loads, b) Finite element model. 
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i. The used material is linearly elastic. 

ii. No initial imperfection of the column. 

iii. No local buckling at any cross-section along the column length is allowed. 

iv. The moments of inertia of the upper and lower parts are I1 and I2 respectively.  

2.2. Method of Analysis  

Firstly, the stability of the stepped column under end and intermediate loads depends on the 

following ratios 

i. Ratio of the intermediate axial load to the end axial load m= (P1+P2)/P1. 

ii. The intermediate load location as a ratio to the total column length. 

iii. Ratio of moment of inertia of lower segment to that of the upper segment n= I2/I1. 

The buckling load can be expressed by the following formula 
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(1) 

Where 

E denotes the modulus of elasticity of column material,  

 denotes the buckling load coefficient that depends on the ratios m, n and  and

k denotes end condition parameter for the uniform column under end axial load 

k =1.00  ---------------- for pinned ends column [P-P] 

k =0.50  ---------------- for clamped ends column [C-C] 

k =0.699  -------------- for clamped-pinned ends column [C-P] 

k =2.00  ---------------- for clamped-free ends column [C-F] 

Assuming values for the ratios m, n and for each particular case, the column under study is 

modelled as a three dimensions frame element as shown in Figure (1-b) with very large number 

of elements. The classical end conditions are considered in the models under study. The critical 

buckling loads for the considered column have been obtained using SAP2000 program based on 

the finite element method.  

Mode shapes for different values of the location of the intermediate load (α) (for C-C column as 

an example) are shown in Figure (2) that describe the buckling behaviour of the considered 

column. 
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Fig. 2. Effect of the intermediate load location in the buckling shape of the stepped column (C-C column) 

To study the interaction relation between the buckling loads P1 and P2, equation (1) can be 

rewritten in the following form 
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Where, A1 and A2 are the buckling factors for the end and intermediate loads that can be 

expressed as follows 

121 . AmAA   

Generally, each one of these factors depends on the other and the increasing of one of them 

causes the other to decrease. The relation between these factors is obtained by numerical analysis 

using finite element method for a certain value of the ratios n and 

3. Results and discussion 

Finite element analysis solution for two-segment stepped columns subjected to both intermediate 

and end axial loads are presented in Figures (3) to (6) for pinned ends, clamped-pinned ends, 

clamped ends and clamped-free ends respectively. Each figure describe the interaction relation 

between the end and intermediate axial loads represented by factors A1 and A2 for different 

locations of the intermediate load () and different moment of inertia ratio of lower segment to 

that of the upper one (n). 

      
  =0.10   =0.30   =0.50   =0.70   =0.90 
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(a)  

(b)  

(c)  

Fig. 3. Bucking loads parameters of columns with pinned ends (P-P) 

under intermediate load P2 and end load P1 

 (a) n=1.0, (b) n=2.0 and (c) n=4.0  
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(a)  

(b)  

(c)  

Fig. 4. Bucking loads parameters of columns with clamped – pinned ends (C-P). 

under intermediate load P2 and end load P1 

n=1.0, (b) n=2.0 and (c) n=4.0  
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(a)  

(b)  

(c)  

Fig. 5. Bucking loads parameters of columns with clamped ends (C-C) 

under intermediate load P2 and end load P1 

 (a) n=1.0, (b) n=2.0 and (c) n=4.0   
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(a)  

(b)  

(c)  

Fig. 6. Bucking loads parameters of columns with clamped - free ends (C-F) 

under intermediate load P2 and end load P1 

 (a) n=1.0, (b) n=2.0 and (c) n=4.0   
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From these figures, it is obvious that the buckling factor A1 decrease almost linearly as the 

buckling factor A2 increases. Curvature of some relations seems more pronounced for certain 

values of  different according the ratio n and the end conditions. Also, it can be noticed that 

when the intermediate axial load is absent (P2=0), for different values of n, the buckling factor A1 

is very close to the exact buckling factor for each end conditions.  

4. Comparison of the results 

The obtained results are checked by comparison with the available results computed in the 

published references.  

Table (1) shows the comparison of results obtained from this study with the exact results solved 

by Timoshenko and Gere [1] for the column with pinned ends considering the intermediate load 

location at the mid-span of the column ( =0.5).  

Table 1 

Comparison of the buckling load factor A1 with exact results obtained by Timoshenko [1] for stepped P-P 

column ( =0.5). 

  m 

n 

1.00 1.25 1.50 1.75 2.00 

Exact F.E.M. Exact F.E.M. Exact F.E.M. Exact F.E.M. Exact F.E.M. 

1.00 1.0000 1.0000 1.1077 1.1077 1.1883 1.1883 1.2500 1.2500 1.2985 1.2985 

1.25 0.8882 0.8882 0.9900 0.9900 1.0671 1.0671 1.1268 1.1268 1.1739 1.1739 

1.50 0.7981 0.7981 0.8939 0.8939 0.9673 0.9673 1.0246 1.0246 1.0702 1.0702 

1.75 0.7240 0.7240 0.8142 0.8142 0.8840 0.8840 0.9388 0.9388 0.9826 0.9826 

2.00 0.6623 0.6622 0.7472 0.7473 0.8135 0.8135 0.8658 0.8658 0.9079 0.9079 

3.00 0.4926 0.4926 0.5609 0.5609 0.6153 0.6153 0.6589 0.6590 0.6945 0.6945 

 

Another comparison with the exact results for uniform columns determined by C. M. Wang and 

I. M. Nazmul [2] is given in Table (2).  

Also, a comparison with the results obtained by Pinarbasi and et.[5] using variational l iteration 

method (VIM) to solve the differential equations is given in Table (3).  

These comparisons shows perfect match and the present method can be used simply by the 

designer engineers.  
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Table 2 

Comparison of the buckling load factor A1 with exact results obtained by Wang [2] 

For uniform column (n =1.0). 

BC m 



0.10 0.30 0.50 0.70 0.90 

Exact F.E.M. Exact F.E.M. Exact F.E.M. Exact F.E.M. Exact F.E.M. 

C
-F

 1.33 0.99944 0.99945 0.98581 0.98581 0.94161 0.94162 0.86980 0.86980 0.78875 0.78876 

2 0.99835 0.99835 0.95726 0.95726 0.83782 0.83783 0.68578 0.68580 0.55388 0.55389 

4 0.99499 0.99499 0.87197 0.87198 0.61410 0.61412 0.41435 0.41435 0.29216 0.29216 

P
-P

 

1.33 0.93776 0.93778 0.86708 0.8671 0.85608 0.85611 0.84337 0.84338 0.78720 0.78721 

2 0.82743 0.82744 0.67982 0.67984 0.66224 0.66225 0.63764 0.6377 0.55070 0.55071 

4 0.59484 0.59485 0.40710 0.40711 0.39163 0.39164 0.36383 0.36383 0.28876 0.28876 

C
-P

 1.33 0.99594 0.99595 0.93568 0.93569 0.88554 0.88556 0.87869 0.87870 0.80760 0.80760 

2 0.98743 0.98744 0.81696 0.81696 0.71611 0.71611 0.70178 0.70178 0.57969 0.57969 

4 0.95845 0.95845 0.56415 0.56416 0.44917 0.44917 0.42938 0.42939 0.31153 0.31153 

C
-C

 1.33 0.99164 0.99164 0.89126 0.89127 0.85609 0.85609 0.81716 0.81716 0.75446 0.75446 

2 0.97330 0.97331 0.71846 0.71846 0.66220 0.66221 0.59088 0.59088 0.50580 0.50581 

4 0.90453 0.90453 0.43958 0.43958 0.39143 0.39143 0.31770 0.31770 0.25425 0.25425 

 

Table 3. 

Comparison of the buckling load factor A1 (n =2.0) with VIM results [5]. 

          

BC 
m 



0.10 0.30 0.50 0.70 0.90 

VIM F.E.M. VIM F.E.M. VIM F.E.M. VIM F.E.M. VIM F.E.M. 

C
-F

 1 1.10777 1.10789 1.37158 1.37172 1.67564 1.67578 1.91452 1.91465 1.99670 1.99676 

2 1.10723 1.10725 1.34554 1.34555 1.47949 1.47950 1.34554 1.34555 1.10723 1.10724 

4 1.10614 1.10626 1.28942 1.28955 1.15317 1.15327 0.82341 0.82347 0.58423 0.58425 

P
-P

 

1 1.00318 1.00318 1.07365 1.07365 1.29847 1.29847 1.70915 1.70915 1.98675 1.98675 

2 0.83493 0.83493 0.75824 0.75824 0.90788 0.90788 1.15679 1.1568 1.09903 1.09902 

4 0.60687 0.60688 0.46943 0.46943 0.56140 0.56141 0.68526 0.68526 0.57707 0.57707 

C
-P

 1 1.09919 1.09920 1.22004 1.22004 1.24671 1.24671 1.53256 1.53256 1.97055 1.97055 

2 1.09455 1.09456 1.05608 1.05609 0.93607 0.93607 1.38487 1.15511 1.15494 1.15494 

4 1.08420 1.08421 0.78045 0.78045 0.61251 0.61251 0.75831 0.75831 0.62244 0.62244 

C
-C

 1 1.10355 1.10356 1.20912 1.20912 1.30751 1.30751 1.66789 1.66789 1.74390 1.74390 

2 1.09393 1.09394 0.92726 0.92726 0.91170 0.91170 1.05339 1.05339 0.89361 0.89361 

4 1.06976 1.06976 0.59612 0.59612 0.56229 0.56230 0.58191 0.58191 0.45184 0.45184 

 

5. Conclusions 
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Finite element method is performed to study the stability of two-segment stepped columns 

subjected to both intermediate and end axial loads. The classical end conditions are considered in 

this paper such as pinned ends, clamped ends, clamped-free ends and pinned-clamped ends.  

Many curves that describe the interaction relation between the end and intermediate critical loads 

are introduced in this paper for each end conditions. These curves are given for various values of 

the intermediate load location ratio and the ratio between the flexural rigidity between the lower 

and upper parts. The obtained results can be obtained directly by design engineers and the 

desired method can be simply modelled by the designers.  

The obtained results are compared with the available exact results for special cases and the other 

results in the published references and theses comparison show an excellent accuracy. 
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