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One of the common methods of the inactively controlling 

structures subject to earthquakes is the use of Tuned Mass 

Damping (TMD) systems. These dampers consist of three 

major parameters, namely mass, damping and stiffness. 

TMDs generally reduce the response domain by influencing 

a mode, which is most often the first mode of the structure. 

Since the TMD parameters remain constant during 

vibrations, it is very important to tune them correctly and 

optimally. In this study, a ten-story structural model with 

mass irregularities has been investigated. The mass ratio for 

the mass damper is assumed to be at 2%. Considering a 

nonlinear structure, to tune the frequency of the mass damper 

to its optimum value, proposed experimental relationships 

have been used. Both regular and irregular structures have 

been subjected to seven near-field and far-field earthquakes 

and amplified dynamic analysis from 0.1g to 1.0g with 0.1g 

steps and mass dampers has been used to evaluate the 

structural behavior. Based on the analyses outcomes, it can 

be seen that the TMD in structures with mass irregularities 

shows a better performance in the first 5 floors compared to 

the absence of dampers. In addition, by creating mass 

irregularities in the floor levels, the structure becomes more 

prone to damages in near-field earthquakes and the 

performance of the TMDs is better in earthquakes of far-field 

nature. 
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1. Introduction 

The use of inactive TMDs is one of the most effective methods of structural control. The concept 

of mass dampers was initially introduced by Frahm in 1909 to reduce the ship hull vibrations due 

to sea waves [1] This damper has a mass of 1-5% of the entire structural weight, which connects 

to a part of the structure with the largest displacement, via a spring and a damper. When this 

mode of the structure is stimulated, the damper absorbs and dampens the earthquake energy 

through its anti-phase movements in relation to the structure. The installation and activation of a 

mass damper is a simple process. In fact, some industrial appliances within the structure can be 

used as dampers. Contrary to the other means of structural control, such as active control, the 

maintenance of mass dampers is not extremely costly. 

2. Literature review 

The first successful experiment of using TMDs in seismic loads was performed in 1973 by 

Wirsching and Yao [2]. It is important to note that the full potential of an active or inactive mass 

damper can be reached when its parameters are optimized [3]. Most of the researches on 

optimized design of TMDs use methods based on assumptions made considering parameters 

such as mass distribution, stiffness and damping of mass dampers as well as the input vibrations. 

Given the large number of variables in the optimized design of mass dampers, the use of standard 

optimization techniques requires extensive calculations; therefore, use of experimental methods 

can be considered acceptable in tuning such dampers. In 1976, Dong [4] introduced a lightweight 

section of the structure with large displacements as the vibration absorbent. 

Ohno et al. in 1977 [5] tuned the optimum frequency of a mass damper such that the sum of the 

squares of the accelerations of the structure was minimized. They assumed a constant density 

spectrum for the earthquake acceleration in a given frequency range. Randall et al. [6] used 

numerical analysis to find the optimum parameters of a linear mass damper for a linearly 

damping structure. They changed the inherent damping of the structure from 0 to 0.5% and 

increased the mass ratio of the damper from 0.01 to 0.04. In this study, the regular and irregular 

structures of Pirizadeh and Shakib [7] are utilized to model and control vibrations and improve 

the structural behavior. 

During the past decade, optimization of steel structures has been carried out to find the best size, 

shape and topology of the structural systems with optimal weight or maximum displacement 

[8,9]. Optimal positioning obtained for braced frames and outrigger-belt truss buildings, where 

all of the structural systems assumed to be as passive control [10,11]. 

The structural modeling is compared and verified against that of the aforementioned research and 

following successful verification of the 10 storey building model, TMDs will be installed on the 

structure. The structure will then be subjected to various earthquake types and ultimately, the 

improved behavior of the structure will be presented in the form of vibration control parameters 

such as displacement value, structural cross sections and result deviation in comparison to the 

average value. 
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3. Case study 

As previously mentioned, the replica used for modeling of regular structures is extracted from 

Pirizadeh and Shakib [7]. Two-dimensional models with mass regularity and irregularity have 

been simulated and verified in the OpenSees software. The structure is assumed to be a regular 

10 storey steel building with storey heights of 3 meters. The structure is 5 x 5 meters in plan, as 

shown in Fig. 1. The lateral load bearing system of the structure in both directions consists of a 

specific bending frame and the roof system is a two-way concrete slab with a rigid diaphragm. 

The structure is designed for a high risk seismic area and soil type II, as defined in Standard No. 

2800-05 [12] and National Building Code [13]. The uniform dead load on the structure is 

assumed to be 700 kg/m2 and the live load on the floors is set at 200 kg/m2. The beam and 

column sections of the regular structure are shown in Fig. 1. The primary period of the regular 

structure is 2.01s with a mass participation of 81%. Three irregular models have also been 

produced from the regular structure, based on the recommendations of Pirizadeh and Shakib [7], 

such that in addition to constant inherent damping and mode one period for the structures, the 

base shear of the regular and irregular structures should remain the same in the linear range. The 

inherent damping for all structures is set to 2% [7]. The cross sections of the beams and columns 

agree with those of the regular model. 

Considering the two-way symmetry of the structure, only a 2D model has been simulated. In the 

software, “Uniaxial Material Steel02” is defined as material property and the “Nonlinear Beam 

Column” is selected for elements type. In order to take the effect of P-∆ into account, the 

coordinate transformation command of geomTransf P-Delta has been used. To simulate the panel 

zone, the eight node Krawinkler model has been used [14]. To produce the structures with mass 

irregularities from the regular structure, based on the Standard No. 2800-05, the mass of the two 

subsequent stories shall be twice one another; therefore, the coefficients shown in Fig. 2 were 

used. 

The distribution factors of mass for the irregular structure are set as 0.995   for the first floor;

0.87   for floors 1-5the; and 0.93   for the 5th floor. The period of the irregular structure for 

floor 1, floors 1-5 and floor 5 are respectively, 2.013, 2.015 and 2.012, which have been modeled 

with an engineering error of 0.25. In Fig. 2, m represents the mass of each storey and the 

irregularity coefficient is determined from Eq. 1. 

       
   

         

Massof theirregular storey
IrregularityCoefficient

Massof theadjacent upper storey
  (1) 
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Fig. 1. Two-dimensional and Three-dimensional view of the 10-storey Structure [7]. 

In order to derive the irregular structures from the regular one, the inherent damping, the first 

mode period and the elastic base shear of both structures should be the same. At this stage, to 

ensure creating irregular models based on the regular structure, the elastic base shear of the two 

models are compared; the mass irregularity curves of the first storey are shown in Fig. 3 as a 

sample for the 3 irregular models. To verify, the pushover analysis and the curves of regular and 

irregular structures are compare; based on Fig. 3, the results correlate satisfactorily. 

 
Fig. 2. Assumed Coefficients and Irregularities. 
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Fig. 3. Regular and Irregular Structural Push Curve for 1st Floor. 

4. Tuned mass damper 

Tuned Mass Damper (TMD) is an inactive control system consisting of 3 mechanical parts: 

mass, spring and viscous damper. One of its uses is to dampen the vibrations in structures, 

caused by earthquakes and wind. Hence it is essential to optimally tune the parameters of the 

TMD. To further explain the performance of a TMD, the parametric relationships for a system 

with 1 degree of freedom are presented below. Footnote d refers to TMDs. 

𝜔2 =
𝑘

𝑚
 (2) 

𝑐 = 2𝜉𝜔𝑚 (3) 

ωd
2 =

kd

md
 (4) 

cd = 2ξdωdmd (5) 

m̅ =
md

m
 (6) 

where, 𝑚̅ is the mass ratio, ω is the angular frequency of the 1st mode, k is the structural stiffness 

(N/m), m is the mass (N) and c is damping (N.s/m). 

TMDs are installed on the roof of regular and irregular structures. “ZeroLength” elements are 

used to model the mass damper in both the reference study and the present research. The element 

consists of an axial spring replicating the damper stiffness and a viscous element for the damping 

effect of the mass damper. The stiffness and damping values are calculated from the optimum 

value equations of Pastia and Luca [15] shown in Eq. 7 and 8. 
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Fig. 4. Software Model. 

 
Fig. 5. A system with 1 DOF, Equipped with a TDM. 

1
TMD

f
f =

1+
 (7) 

3

3

8(1 )
opt








 (8) 

where, μ is the mass ratio, f1 is the first mode frequency, fTMD is the frequency of the TMD and 

ξopt is the optimal damping of the TMD. 

The simulated earthquakes are selected using the P695FEMA [16] instructions. 

Table 1 

Far-Field Earthquakes Applied to the Structures. 

PGA(g) Station Earthquake No. 

0.52 Beverly Hill Northridge 1 
0.48 Canyon Country-WLC Northridge 2 
0.82 Bolu Duzce, Turkey 3 
0.34 Hector Hector Mine 4 
0.35 Delta Imperial Valley 5 
0.38 El Centro Array #11 Imperial Valley 6 
0.51 Nishi-Akashi Kobe, Japan 7 



 M. Babaei, A. Moniri/ Computational Engineering and Physical Modeling 1-2 (2018) 83-94 89 

Table 2 

Near-Field Earthquakes Applied to the Structure. 

PGA(g) Station Earthquake No. 

0.71 Karakyr Gazli, USSR 1 

0.76 Bonds Corner Imperial Valley-06 2 

0.28 Chihuahua Imperial Valley-06 3 

1.18 Site 1 Nahanni, Canada 4 

0.45 Site 2 Nahanni, Canada 5 

0.64 BRAN Loma Prieta 6 

0.51 Corralitos Loma Prieta 7 

 

5. Dynamic analysis 

After performing about ten analyses on the simulated structures, in order to facilitate the 

efficiency evaluation of the control system, specific benchmarks have been assumed as it relates 

to the vibration behavior of the structure. These benchmarks are of the nature of maximum 

results and norm results, which will be explained below. In this research for evaluation criteria 

have been used, two of which relate to the displacements of the structure roof and the other two 

are concerning the base shear. The following equations, index c refers to conditions controlled 

with mass dampers and index u refers to the uncontrolled condition. In addition, x defines the 

displacement of the roof and v represents base shear. 

The results of the nonlinear dynamic analysis for the Northridge earthquake (an example of a far-

field earthquake) and the Loma Prieta earthquake (a near-field example), with maximum 

accelerations of 0.1 and 0.5 times the gravitational acceleration, are shown in Figures 6 to 9. The 

rest of the results are also shown in Tables 3 to 6, giving the average value of the outcomes of 7 

far-field and 7 near-field earthquakes. Since the analysis results of the first five floors and the 

mass irregularity of the fifth floor are similar to the results of the mass irregularity of the first 

floor, therefore, the results have not been displayed to avoid repetition. 

Based on the sample Northridge earthquake curves, for regular structures with and without a 

damper, it can be observed that with the increase in the maximum acceleration, the structures 

enter the nonlinear zone and the vibration occurs in this zone. Therefore, in higher maximum 

accelerations, the structure becomes distant from the y=0 axis and begins vibration about the 

resting zone. 

Based on the values of Tables 3 to 6, it can be seen that the result improvement percentage for 

the maximum displacement of the roof (and the same value for the base shear), decrease with the 

increasing maximum acceleration of the applied earthquakes. As a result, in addition to the 

structure becoming nonlinear, which changes the frequency, the earthquake magnitude increases 

and the controllability of the structural vibrations decrease. 
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With the structure entering the nonlinear zone, the structural frequency decreases and its period 

increase, which itself is an important factor in interrupting the controlled frequency of the mass 

damper. This is due to the fact that TMD is tuned based on the structure’s first mode and its 

value remains constant during the earthquake application; with the structure entering the 

nonlinear zone, the structural frequency changes, which in return causes the structure and the 

TMD to have different frequencies and lose the optimally controlled zone. Hence the 

performance of the mass damper will be reduced. 

 
Fig. 6. Displacement Results for the Roof of a First Floor Irregular Structure Subjected to the Northridge 

Earthquake (PGA = 0.1g) 

 
Fig. 7. Displacement Results for the Roof of a First Floor Irregular Structure Subjected to the Northridge 

Earthquake (PGA = 0.5g). 
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Fig. 8. Displacement Results for the Roof of a First Floor Irregular Structure Subjected to the Loma Prieta 

Earthquake (PGA = 0.1g). 

 

Fig. 9. Displacement Results for the Roof of a First Floor Irregular Structure Subjected to the Loma Prieta 

Earthquake (PGA = 0.1g). 
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Table 3 

Average Value of the Max Displacement and RMS of the Roof of an Irregular Mass Structure, on the first 

floor, based on Far-Field Earthquakes. 

Improvement 

Percentage (%) 

RMS 

Displacement 

With TMD 

RMS 

Displacement 

Without TMD 

Improvement 

Percentage (%) 

Maximum 

Displacement 

With TMD (m) 

Maximum 

Displacement 

Without TMD 

(m) 

PGA 

(g) 

28.9532 0.040513 0.057023 15.83991 0.145972 0.173445 0.1 

12.66056 0.078165 0.089495 6.014618 0.284084 0.302264 0.2 

13.6795 0.12569 0.145609 5.561635 0.41489 0.439324 0.3 

9.002074 0.180278 0.198112 6.211637 0.527158 0.562072 0.4 

6.06052 0.240394 0.255903 3.20761 0.664339 0.686354 0.5 

6.586894 0.297711 0.318703 3.934994 0.838559 0.872908 0.6 

7.844112 0.357605 0.388044 4.610225 0.993992 1.042032 0.7 

6.423667 0.445622 0.476212 4.395306 1.124033 1.175709 0.8 

4.069801 0.566301 0.590326 3.433812 1.2515 1.296003 0.9 

3.763871 0.731229 0.759828 4.589753 1.458938 1.52912 1 

 

Table 4 

Average Value of the Max Displacement and RMS of the Roof of an Irregular Mass Structure, on the first 

floor, based on Near-Field Earthquakes. 

Improvement 

Percentage (%) 

RMS 

Displacement 

With TMD 

RMS 

Displacement 

Without TMD 

Improvement 

Percentage (%) 

Maximum 

Displacement 

With TMD (m) 

Maximum 

Displacement 

Without TMD 

(m) 

PGA 

(g) 

30.8761 0.047976 0.069406 12.26566 0.153607 0.175082 0.1 

17.90967 0.084152 0.102512 7.774757 0.26969 0.292425 0.2 

8.621934 0.116961 0.127997 0.94262 0.361781 0.365223 0.3 

6.410901 0.169954 0.181596 2.740877 0.454979 0.4678 0.4 

4.505683 0.256543 0.268648 4.281329 0.608407 0.63562 0.5 

2.823026 0.367164 0.37783 3.503432 0.788752 0.817389 0.6 

1.935773 0.491206 0.500902 2.351916 0.96579 0.989052 0.7 

-0.29599 0.62237 0.620533 -0.60574 1.186076 1.178935 0.8 

-0.11387 0.78257 0.78168 0.667892 1.435195 1.444845 0.9 

1.106911 0.979613 0.990577 0.550318 1.737858 1.747475 1 

 

Table 5 

Average Maximum value and RMS of Base Stress and of the Roof of an Irregular Mass Structure, on the 

first floor, based on Far-Field Earthquakes. 

Improvement 

Percentage (%) 

RMS Shear 

With TMD 

RMS Shear 

Without TMD 

Improvement 

Percentage (%) 

Maximum Shear 

With TMD (N) 

Maximum Shear 

Without TMD 

(N) 

PGA 

(g) 

24.05611 23932.48 31513.37 10.34528 107876.7 120324.6 0.1 

12.64852 38364.42 43919.6 0.231619 179650.6 180067.6 0.2 

6.662439 47072.67 50432.72 -0.52008 207471 206397.6 0.3 

4.804667 54120.48 56852.03 0.230771 236256.2 236802.6 0.4 

4.161107 60253.4 62869.46 0.145589 258414.7 258791.5 0.5 

3.420809 66070.33 68410.52 0.055445 282133.3 282289.8 0.6 

2.905494 71641.11 73784.92 -0.21462 302778 302129.6 0.7 

2.41078 76955.83 78856.89 -0.26693 320900.9 320046.6 0.8 

2.057536 82063.91 83787.88 -0.10141 337875 337532.7 0.9 

1.679093 86947.71 88432.58 -0.03791 354025.9 353891.7 1 



 M. Babaei, A. Moniri/ Computational Engineering and Physical Modeling 1-2 (2018) 83-94 93 

Table 6 

Average Maximum value and RMS of Base Stress and of the Roof of an Irregular Mass Structure, on the 

first floor, based on Near-Field Earthquakes. 

Improvement 

Percentage (%) 

RMS Shear 

With TMD 

RMS Shear 

Without TMD 

Improvement 

Percentage (%) 

Maximum Shear 

With TMD (N) 

Maximum Shear 

Without TMD 

(N) 

PGA 

(g) 

22.51322 30959.3 39954.3 9.702601 108133.2 119752.3 0.1 

10.1987 47611.95 53019.22 2.205563 177540.7 181544.8 0.2 

5.802328 56356.37 59827.78 1.337302 221521.6 224524.2 0.3 

2.807273 64281.66 66138.34 -0.21385 252344.9 251806.4 0.4 

1.909258 71929.59 73329.64 -0.1313 268888.3 268535.8 0.5 

1.441354 79463.19 80625.29 0.433179 283564.2 284797.8 0.6 

1.156868 86700.26 87715.01 1.557111 302989 307781.5 0.7 

0.834084 93652.87 94440.58 1.128422 324688 328393.7 0.8 

0.620924 100126.2 100751.8 0.743621 342769.2 345337.2 0.9 

0.429358 106235.3 106693.4 0.431566 357492 359041.5 1 

 

6. Conclusions 

In this research, the vibration control of structure with irregular masses, subjected to near-field 

and far-field earthquakes has been optimized using a tuned mass damper. The efficiency of 

TMDs in reducing the response of the structure when subjected to destructive earthquakes has 

also been studied.  Based on the analyses performed on the effect of various earthquakes on 

regular structures with and without dampers, it can be confirmed that mass dampers can be 

beneficial in any type of earthquake, the results of which are presented in the form of structural 

averages. Thus, the conclusion of this study can be described as follows: 

TMDs in structures with mass irregularities show a better performance in floors 1 to 5, compared 

to the first and fifth floor. By creating mass irregularities in the stories, structures become more 

prone to damage in near-field earthquakes compared to far-field earthquakes. 

The performance of TMD when subjected to far-field earthquakes is better than near-field 

earthquakes. Additionally, despite their ineffectiveness in reducing the maximum structural 

response, TMDs prove to be very useful in reducing vibrations during the earthquake application 

time and results variance is lower in structures with tuned mass dampers. 
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