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This paper is concerned with the elastic stability of slender 

tapered columns of regular polygon cross-section with 

constant volume is presented. Various end conditions of the 

tapered columns such as pinned ends, clamped -pinned ends 

and clamped ends are considered in this paper. The analysis 

is developed using finite element method for linear, 

parabolic and sinusoidal tapers assuming firstly circular 

cross-section. The polygon cross-sections other the circular 

one are studied by investigating a direct relation between the 

side number of the polygon cross-section and the critical 

load parameter. The main parameter in this study is the 

section ratio that defined as the ratio between the section 

depths at the mid-span of the considered column to that at 

the column ends. The obtained numerical results are 

introduced in many curves to describe the relation between 

the buckling load and the section ratio considering linear, 

parabolic and sinusoidal tapers and various side number of 

the polygon cross-section for each end conditions. The 

obtained results of the buckling factor are simple with 

satisfactory accuracy compared with results that obtained in 

other theoretical studies. 
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1. Introduction 

Stability of columns is an important item in structural engineering so that the critical buckling 

loads of columns and its behavior’s under different cases of loading and different cases of end 

conditions have been studied and documented in many researches and texts such as Timoshenko 

[1]. The main goals of the design are the safety and economic so that increasing of the critical 

loads of specific span length columns without increasing the column volume, are important in 

the viewpoint of optimal design. Also, for architecture proposes, tapered columns may be 

required. 

Many studies for columns with constant volume are carried out by Keller [2], Tadjbakhsh and 

Kelller [3], Barnes [4] and Cox and Overton [5] to determine the critical load and the strongest 

columns. Lee and Oh [6] developed Numerical methods to solve elastic and critical buckling 

loads of simply supported tapered column with constant volume. Also, Lee, Oh and Li [7] 

studied the stability of tapered columns with polygon cross-section considering the case of 

clamped ends only. The differential equation governing the buckled shape of solid tapered 

columns with polygon cross-section having a constant volume is derived by Lee, Karr and Kim 

[8] that solved numerically.  

In this paper, stability study of slender solid tapered columns having constant volume with 

regular polygon cross-section is carried out using finite element method assuming linear, 

parabolic and sinusoidal tapers and considering various end conditions. Also, the effect of the 

number of sides of the cross-section in the critical load is introduced in a direct relation. 

2. Object column 

Consider a slender solid tapered column with specific span length L and constant volume V as 

shown in Figure 1. The cross-section is a regular polygon and its depth h varies with the 

coordinate x. The cross-section depth at the column ends and at the mid-span are h0 and hm 

respectively.  

The cross-sectional area A and the moment of inertia I of the regular polygon cross-section are as 

follows 
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Where h is the cross-sectional depth at a distance x from the column end. 
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Fig. 1. Tapered column with regular polygon cross-section. 

For linear taper, the variable depth h as a function of x is determined as follows 

  01 2 1
x

h n h
L

  
     

  
                          0 2x L    (3-a) 

    01 2 1 2 1
x

h n n h
L

  
       

  
          2L x L   (3-b) 

Where, the section ratio n is a non-dimensional parameter as follows 
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Then, the volume V can be determined as follows 
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Second, for parabolic taper, the cross-section depth h and volume V are obtained as follows 
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Finally, for the sinusoidal taper, the cross-section depth h and volume V are obtained as follows 
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Generally, Eqs (3, 6 and 8) can be written in the following form 

0h h   (10) 

Where  is a function of n and x  

Then, 
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Substituting Eq. (11) in Eq. (2) 
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Assuming a column having a uniform circular cross-section with volume V .The moment of 

inertia of its cross-sectional area Ie can be easily determined as follows 
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Substituting Eq. (13) in Eq. (12) 
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Thus, the critical buckling load for columns under study can be assumed as 
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Where, 

E is the modulus of elasticity of the column material, 

is the buckling load parameter 

 represents the effect of the side number of the polygon section as cleared above. This factor 

doesn't depend on the type of the taper (linear, parabolic, or sinusoidal) and can be expressed as 

follows: 
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But the factor represents the effect of taper type and the section ratio n that will be obtained 

numerically by finite element method on the next section. 

The factor  can be determined as shown in Table 1 

Table 1 

Effect of the side number of the polygon section m in buckling factor. 

m 3 4 5 8 ∞ 

 1.209 1.047 1.017 1.002 1.000 

 

3. Method and assumptions 

The column under study is modeled as a solid element as shown in Figure 2 with circular cross-

section (m = ∞) where the effect of the side number of the polygon section can be determined as 

discussed by Eq. (16) and Table 1. The column length is divided by twenty segments and the 

diameter of each segment cross-section is calculated by using Eqs (3, 6 and 8) for linear, 

parabolic and sinusoidal tapered columns with different values of section ratio n. Different end 

conditions such as pinned ends, clamped-pinned, ends and clamped ends are considered in the 

models under study. The critical buckling loads for the column under study have been obtained 

using SAP2000 program based on the finite element method. 

   

n >1.0 n = 1.0 n < 1.0 

Fig. 2. Finite element model of the Column under study. 
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4. Results and discussions  

Figures 3 shows the relation between buckling factor  and the section ratio n of pinned ends 

column for linear, parabolic and sinusoidal tapers considering various number of the cross-

section sides (m =3, 4, 5 and ∞). Also, Figures 4 and 5 describe the same relations with other end 

conditions such as clamped -pinned ends and clamped ends. 

 
a) Linear tapered column 

 
b) Parabolic tapered column 
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c) Sinusoidal tapered column 

Fig. 3. Buckling load parameter of tapered columns with pinned ends. 

 
a) Linear tapered column 

 

b) Parabolic tapered column 
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c) Sinusoidal tapered column 

Fig. 4. Buckling load parameter of tapered columns with clamped-pinned ends. 

 
a) Linear tapered column 

 
b) Parabolic tapered column 
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c) Sinusoidal tapered column 

Fig. 5. Buckling load parameter of tapered columns with clamped ends. 

All these figures illustrate the effect of section ratio n, side number m, taper type and the end 

conditions to the buckling coefficient . 

The most resistant columns to buckle can be obtained by reading the peak points of the resulted 

curves that represent the maximum critical buckling parameter corresponding to the taper type 

for each end conditions.  

It is obvious that at the columns with uniform circular section (n =1 and m = ∞), the buckling 

parameter equal to the exact factors of the known cases for various end conditions. 

From the Figures 3 to 5 and Table 1, it is noticed that the buckling parameter are largest at 

triangular cross-section (m=3) and smallest at circular cross-section (m = ∞). Also, it is noticed 

that the resulted buckling loads are very close if the side number m equal to or greater than 4 

(m≥4).  

Table 2 shows a comparison between the results of the critical buckling loads from this study and that 

obtained by Lee, Karr and Kim [8] for various end conditions, different taper types and several 

side numbers. The chosen values of the section ratio n are the values corresponding to the 

strongest columns. This comparison clears the accuracy of the developed method in this paper 

that can be easily used by design engineers. 

 

 

 

 

 



68 M. I. Salama/ Computational Engineering and Physical Modeling 1-2 (2018) 59-69 

Table 2 
Comparison of buckling load parameter results between this study and reference [8]. 

Taper type End conditions m n 

 

% Diff. 
This study 

Reference 

[8] 

P
ar

ab
o

li
c 

ta
p

er
 

Clamped ends 

3 

0.836 

4.938 4.929 0.190% 

4 4.277 4.269 0.182% 

5 4.153 4.146 0.176% 

∞ 4.084 4.076 0.196% 

Clamped-pinned ends 

3 

1.174 

2.495 2.503 -0.336% 

4 2.160 2.167 -0.306% 

5 2.098 2.105 -0.332% 

∞ 2.063 2.070 -0.338% 

Pinned ends 

3 

1.973 

1.567 1.572 -0.310% 

4 1.357 1.362 -0.355% 

5 1.318 1.322 -0.303% 

∞ 1.296 1.300 -0.308% 

S
in

u
so

id
al

 t
ap

er
 

Clamped ends 

3 

0.854 

4.909 4.904 0.109% 

4 4.252 4.247 0.109% 

5 4.129 4.125 0.095% 

∞ 4.060 4.056 0.099% 

Clamped-pinned ends 

3 

1.183 

2.499 2.507 -0.312% 

4 2.164 2.171 -0.306% 

5 2.102 2.108 -0.290% 

∞ 2.067 2.073 -0.299% 

Pinned ends 

3 

1.850 

1.556 1.558 -0.113% 

4 1.348 1.349 -0.093% 

5 1.309 1.310 -0.088% 

∞ 1.287 1.288 -0.078% 

 

5. Conclusions 

Finite element method is established in this study for estimating the critical load of solid tapered 

columns having polygon cross-section with constant volume. Different end constraints such as 

pinned ends, clamped ends and pinned-clamped ends are studied in this paper. The linear, 

parabolic and sinusoidal tapers are considered in this study. 
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The results obtained from this study are introduced in many curves to describe the relation 

between the critical load and the section ratio n for different types of tapers. The obtained curves 

cover the different end conditions and different side number m. Also, the relation between the 

buckling load coefficient and the side number m of the uniform polygon cross-section is derived 

in closed-form relation.  

For each end conditions and appropriate taper type of the column under study, the peak points of 

the resulted curves represent the strongest column corresponding to the side number. 

This present method is simple to use by engineers designing columns under study with 

satisfactory accuracy compared with results that obtained in published references.  
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