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A study of magnetohydrodynamic squeezing flow of 

nanofluid between two parallel plates embedded in a porous 

medium is presented in this work. The ordinary differential 

equation which is transformed from the developed governing 

partial differential equations is solved using differential 

transformation method. The accuracy of the results of the 

approximate analytical method are established as they agree 

very well with the results numerical method using fourth-

fifth order Runge-Kutta-Fehlberg method. Using the 

developed analytical solutions, the parametric studies reveal 

that when the velocity of the flow increases during the 

squeezing process, the Hartmann and squeezing numbers 

decrease while during the separation process, the velocity of 

the fluid increases with increase in Hartmann and squeezing 

numbers. Also, the velocity of the nanofluids further 

decreases as the Hartmann number increases when the plates 

move apart. However, it is revealed that increase in nanotube 

concentration leads to an increase in the velocity of the flow 

during the squeezing flow. The present study will be useful 

in various industrial, biological and engineering applications. 
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1. Introduction 

The various industrial, biological and engineering applications of flow of squeezing flow of fluid 

between parallel plates have been the impetus for the continued interest and generation renewed 

interests on the subject. Also, the continuous technological developments have shown the various 

industrial, biological and engineering applications etc. These various applications coupled with 

the practical significance of the phenomena have in recent times made the process an increasing 

area of an active research fields in fluid dynamics. Although, the pioneer work and the basic 

formulations on the flow phenomena was carried out Stefan [1], the analysis of the squeezing 

flow process has continued to receive tremendous attention in the past few decades. However, 

the applications of Reynolds equation for the squeezing flow analysis in earlier studies [1–3] led 

the studies to insufficient and inaccurate analyses as shown by Jackson [4] and Usha and 

Sridharan [5]. Consequently, further studies have been presented in recent times to give a better 

insight into the flow phenomena. Among these study, Usha and Sridharan [5] investigated the 

arbitrary squeezing flow of a viscous fluid between elliptic plates while in an earlier work, Yang 

[6] considered unsteady laminar boundary layers in an incompressible stagnation flow. In a group 

of research studies, Kuzma [7], Tichy and Winer [8] and Grimm [9] examined the effects of fluid 

inertial on squeezing flow. Moreover, in order to gain better insight into the flow process, further 

works has been done [5–15]. 

Analyses of unsteady squeezing flow of Casson and viscous fluids between two plates have been 

carried out by Khan [10] and Rashidi et al. [16], respectively. Effects of heat transfer on the 

squeezing flow characteristics of viscous fluid was investigated by Duwairi et al. [17] while 

Qayyum et al. [18] analyzed the squeezing flow pattern of second grade and micropolar fluids. 

The squeezing flow behaviour of dusty fluids was examined by Hamdam and Baron [14]. The 

flow heat transfer of viscous fluid on a porous surface of a squeezing flow problem was 

presented by Mahmood [19]. Using differential transformation method, approximate analytical 

solutions were developed by Hatami and Jing [20] to study the squeezing flow of Newtonian and 

non-Newtonian nanofluids.  An extended work on heat and mass transfer of a rotating squeezing 

flow of nanofluid was submitted by Mohyud-Din et al. [21]. In another work [22], the authors 

scrutinized the squeezing flow of Casson fluid under the impacts of effects of thermal radiation. 

Qayyum and Khan [23] investigated the squeezing problem immersed in a porous medium while 

Qayyum et al. [24]studied the influence of slip on the unsteady axisymmetric squeezing flow of 

viscous fluid through a porous medium channel. A study on heat and mass transfer in the 

unsteady squeezing flow between parallel plates by Mustafa et al.[25]. In different studies, the 

effects of magnetic field on the steady and unsteady squeezing flow of different Newtonian and 

Non-Newtonian fluids have been examined by Siddiqui et al.[26], Domairry and Aziz [27], 

Acharya et al. [28], Ahmed et al. [29], Ahmed et al. [30], Khan et al. [31,32], Hayat et al. [33], 

Khan et al. [34], Ullah et al. [35] etc. In a recent study, combined effects of slip and magnetic 

field on the squeezing flow problem was studied by Sobamowo and Jayesimi [36] using 

Chebychev spectral collocation method. In a previous study, methods such as regular and 

singular perturbation and differential transformation has been used by Sobamowo and Akinshilo 

[37] and Sobamowo [38] to analyze such flow problem under the magnetic field. Effects of 

nanoparticle shapes and Ferro-magnetic magnetic field on peristaltic flow of Copper-water by 
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Akbar and Butt [39] while Sheikholesmi and Bhatti [40] examined the impacts of magnetic field 

and shape of nanoparticles on the heat transfer characteristic of nanofluid. Further studies on the 

effects of magnetic fields, thermal radiation, nanoparticles, chemical reactions etc. are presented 

in [41–49]. 

In the past and recent studies, different numerical and analytical approximate methods have been 

adopted to analyze the nonlinear problems of the flow processes. In the present study, differential 

transformation method is used to analyze the magnetohydrodynamic squeezing flow of nanofluid 

between two parallel plates embedded in a porous medium. Parametric studies are carried out 

using the approximate analytical solutions. 

2. Description of the problem and model development  

Fig. 1 shows an unsteady two-dimensional squeezing flow of nanofluid between two parallel 

plates placed at time-variant distance and under the influence of magnetic field. In such flow 

problem as presented in the figure, it is assumed that the flow of the nanofluid is laminar, stable, 

incompressible, isothermal, non-reacting chemically, the nanoparticles and base fluid are in 

thermal equilibrium and the physical properties are constant. The fluid conducts electrical energy 

as it flows unsteadily under magnetic force field. The fluid structure is everywhere in 

thermodynamic equilibrium and the plate is maintained at constant temperature.  

 
Fig. 1. Model diagram of the flow process. 

Following the assumptions, the governing equations for the flow are given as [36–38]  
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Table 1 and 2 present the thermal-physical properties of the base fluid and the nanoparticles, 

respectively 

Table 1 

Thermal-physical properties of the base fluid [39–41][50,51]. 
Base fluid ρ (kg/m3) cp (J/kgK) k (W/mK) 

Pure water 997.1 4179 0.613 

Engine oil 884 1910 0.144 

Kerosene 783 2010 0.145 

Ethylene Glycol 1115 2430 0253 

 

Table 2 
Thermal-physical properties of nanoparticles [39–41][50,51]. 

Nanoparticles ρ (kg/m3) cp (J/kgK) k (W/mK) 
Copper (Cu) 8933 385 401 
Silver (Ag) 10500 235.0 429 
SWCNTs 2600 42.5 6600 
Aluminum oxide (Al2O3) 3970 765 40 
Copper (II) Oxide (CuO) 783 540 18 
Titanium dioxide (TiO2) 4250 686.2 8.9538 

 

Introducing the following dimensionless and similarity variables into Eq. (1) - (3). 
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Alternatively, Eq. (8) can also be expressed as  

   
2.5 2 1

1 3 0ivf SA f f ff f f M f f
Da

                 (9) 

and the boundary conditions are 

   0 0, 0 0f f    

   1 1, 1 0f f    (10) 

The boundary conditions depict the condition of no-slip on the disk. 

3. Analysis of the differential equation using differential transform method 

The developed nonlinear equation in Eq. (9) cannot be solved exactly and analytically. However, 

we apply an approximated analytical method such as differential transformation method (DTM) 

as introduced by Ζhou [52] to solve the equation. The basic definitions, the properties and some 

applications of the method can be found in [38,53–57] 

Using the DTM operational properties as stated in [38,52–57], the differential transform of Eq. 

(8) is  
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Therefore, we have the following boundary conditions in DTM domain 

     1 20 0, (2) 0, 1 , 3F F F k F k     (17) 

where k1 and k2 are the constants which will be determined through the boundary conditions 
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Using m=0, 1, 2, 3… in the above recursive relations, one arrives at 
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Following from above and according to the definition of DTM, one can write the solution of Eq. 

(8) as 
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The unknown values of constants k1 and k2 can be found using Eq. (15) which states that at

   1 1, 1 0f f   . Therefore, according to the boundary conditions, we have  
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It should be noted that when Eq. (21) and (22) are solved, different values for k1 and k2   are gotten 

for respective values of α and Re. 

In order to find the skin friction, the second-order derivatives of f(1) at the wall is developed as 
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It should be noted that  
2.5

1Re SA     

Judging from physical point of view, the skin friction is an important physical quantity of interest 

in the flow analysis of fluid. 

The skin friction can be expressed as 
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Using the dimensionless variables in Eq. (7), we developed a non-dimensional form of Eq. (24) 

as 
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which gives, 
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4. Results and discussion 

In order to establish the accuracy of the results of the applied approximate analytical method, the 

results are compared with the results of numerical method (NM) using fourth-fifth order Runge-

Kutta-Fehlberg method as presented in Tables 3-5. The table shows the comparisons of results of 

DTM and NM for different values of permeation Reynolds and Hartmann numbers. Also, the 

Tables presented the various impacts of controlling flow parameters on the squeezing flow 

process. It is shown that during the separation flow, the velocity of the flow increases while the 

skin friction coefficient decreases. However, in the squeezing flow process, increase in the 

squeezing and Hartmann numbers cause the skin friction coefficient to decrease. 

Table 3 
Results of NM and DTM for large squeezing number in the absence of magnetic field. 

f Squeezing   S= 101 M=0, 1/Da=0 
η NM DTM 

0.0 0.00000 0.00000 
0.1 0.16377 0.16376 
0.2 0.32193 0.32194 
0.3 0.46995 0.46992 
0.4 0.60424 0.60422 
0.5 0.72190 0.72191 
0.6 0.82063 0.82063 

0.7 0.89871 0.89874 

0.8 0.95498 0.95496 

0.9 0.98878 0.98875 

1.0 1.00000 1.00000 

 



 M. G. Sobamowo et al./ Computational Engineering and Physical Modeling 1-4 (2018) 01-15 9 

Table 4 
Results of NM and DTM of skin friction parameter for large separation number under the influence of 

magnetic field. 

 1f   

S M NM DTM 
12.957 6.445 -4.78 -4.78 

18.638 6.103 -4.07 -4.07 

25.747 7.151 -4.11 -4.11 

41.818 11.419 -5.10 -5.10 

50.460 9.964 -4.16 -4.16 

62.485 11.077 -4.17 -4.17 

76.326 12.233 -4.18 4.18 

 

Table 5 

Results of NM and DTM for small squeezing number in the absence of magnetic field. 
f Squeezing S = 0.5,   M=0, 1/Da=0 Squeezing   S = 1.5, M=0, 1/Da=0 

η NM DTM NM DTM 

0.0 0.00000 0.00000 0.00000 0.00000 

0.2 0.31707 0.31705 0.31609 0.31607 

0.4 0.59972 0.59971 0.59818 0.59820 

0.6 0.81886 0.81884 0.8174 0.81743 

0.8 0.95526 0.95525 0.95430 0.95432 

1.0 1.00000 1.00000 1.00000 1.00000 

 

Using nanoparticle parameter value of 0.15 i.e. ϕ = 0.15, Figs. 2 and 3 show the variation of 

velocities of flow of the fluid over the length. As depicted in the figure, when the axial velocity 

of fluid flow near the wall region decreases, there is an increase in velocity gradient at the wall 

region. This behaviour occurs because of the conservativeness of the mass flow rate. 

           
Fig. 2a. Variation of f(η) with the flow length          Fig. 2b. Variation of f’(η) with the flow length 

Impact of magnetic field parameter on the flow behaviour of the fluid is shown in Fig. 3. As the 

Hartmann number increases, the flow velocity decreases in the range of 0 ≤ η ≤ 0.5 and then 

increases in the range 0.5 < η ≤ 1. This is due to the fact that the magnetic field created a 

retarding force, Lorentz force created which decreases the motion of the fluid at boundary layer 
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during the squeezing flow process. During the separation of the plates, as the magnetic field 

parameter increases, the flow velocity of the fluid further decreases. Such a behaviour is caused 

by the fact that the fluid flow with high velocity to fill a vacant space that occurs such that the 

law of conservation of mass is not violated. 

Fig. 4 displays the influence of Darcy number on the squeezing flow pattern of the nanofluid. As 

it is shown in the figure, there is an opposite trend to that of the squeezing number effects on the 

flow process. The figure shows that increase in the Darcy number causes the flow velocity to 

increase in the range of 0 ≤ η ≤ 0.5 and a decrease is witness in the range 0.5 < η  ≤ 1. 

 

Fig. 3. Effects of magnetic number on the flow velocity of the fluid. 

 
Fig. 4. Effects of Darcy number on the flow velocity of the fluid. 

As it is illustrated in Fig. 5, the effects of squeezing number on the flow velocity is shown. As 

the squeezing number increases, there is a decrease in flow velocity in the range of 0 ≤ η ≤ 0.5 

and then increase in the flow velocity in the range 0.5 < η ≤ 1.  Fig. 6 shows that impacts of 

nanoparticle fraction on the fluid velocity. It is shown that as the nanoparticle fraction increases, 

the velocity decreases in the range of 0 ≤ η ≤ 0.5 and then increases in the range 0.5 < η ≤ 1. This 
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is because increase in the nanoparticle fraction leads to an increased more collisions between 

nanoparticle and particles at the boundary surface of the plates. Consequently, a retardation in the 

flow process occurs which decreases the flow velocity near the boundary layer. 

 

Fig. 5. Effects of Squeezing number on the flow velocity of the fluid. 

 

Fig. 6. Effects of nanoparticle fraction on the flow velocity of the fluid. 

Table 6 

Skin friction for different squeezing, Hartmann and Darcy numbers. 

S M Da fC
 

12.957 4.340 0.475 -3.48 
18.638 3.672 0.411 -2.96 
25.747 3.587 0.390 -2.99 
41.818 7.104 0.232 -3.71 
50.460 6.236 0.268 -3.03 
62.485 5.820 0.190 -3.03 
76.326 6.444 0.173 -3.04 
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Numerical values for skin friction coefficient are presented in Table 6.  The Table also presented 

the effects of squeezing (S), magnetic parameters (M) and Darcy (Da) on the skin coefficient. It 

is shown that the numerical value of the skin friction coefficient increases as the squeezing (S) 

and Hartmann (magnetic field, M) numbers increase, the skin-friction coefficient also increases 

while the skin-friction coefficient decreases as the Darcy number increases. 

5. Conclusion 

In this work, analysis of magnetohydrodynamic squeezing flow of nanofluid between two 

parallel plates embedded in a porous medium have been presented using differential 

transformation method. The accuracy of the results of the approximate analytical method was 

established numerically using fourth-fifth order Runge-Kutta-Fehlberg method. Parametric 

studies were carried out which established the impacts of the controlling flow parameter on the 

flow process. The present study will be useful in various industrial, biological and engineering 

applications. 

Nomenclature 

B(t) Magnetic field strength 

Da Darcy number 

H Squeezing flow height 

Kp Permeability  

M Hartmann parameter 

P Pressure 

py yield stress of the fluid. 

Re Reynold number  

 Squeezing flow Parameter 

U velocity in x direction 

V velocity in y Direction 

 Dimensionless velocity in y direction 

Vw injection/suction velocity 

x horizontal axis of flow 

y Perpendicular axis to the flow 

 Effective thermal conductivity 

Greek Symbol 

 Effective dynamic viscosity 

 Effective density 

 Dimensionless similarity variable 

τ shear stress 

τo Casson yield stress  

μ dynamic viscosity  

  shear rate 

Φ fraction of nanoparticle in nanofluid 
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