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The present study presents analytical solution to transient 

combustion analysis for iron micro-particles in a gaseous 

oxidizing medium using Adomian decomposition method. 

The analytical solutions obtained by the Adomian 

decomposition method are verified with those of the fourth 

order Runge–Kutta numerical method. Also, parametric 

studies are carried out to properly understand the chemistry 

of the process and the associated burning time. Thermal 

radiation effect from the external surface of burning particle 

and variations of density of iron particle with temperature are 

considered. Furthermore, the results show that by increasing 

the heat realized parameter, combustion temperature 

increased until a steady state is reached. This work will be 

useful in solving to a great extent one of the challenges 

facing industries on combustion of metallic particles such as 

iron particles as well as in the determination of different 

particles burning time. 
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1. Introduction 

The past few decades have experienced various industrial challenges associated with metallic 

particles combustion. Also, accurate prediction of the burning period of the combustibles has 

https://doi.org/10.22115/CEPM.2018.122052.1012
https://doi.org/10.22115/cepm.2018.122052.1012
http://creativecommons.org/licenses/by/4.0/
http://www.jcepm.com/
mailto:mikegbeminiyiprof@yahoo.com
https://doi.org/10.22115/CEPM.2018.122052.1012


2 M.G. Sobamowo, A.A. Yinusa/ Computational Engineering and Physical Modeling 1-2 (2018) 01-15 

posed serious challenges to the transient analysis of the combustion process. Combustible dusts 

which approximates gaseous oxidizing media require an accurate knowledge of their explosion 

hazards in order to make their importance to manufacturing, generation, process and industrial 

application applaudable. As a result, researchers have ventured into better understanding and 

modeling the particle and dust combustion. In a recent study, Sun et al. [1] examined the 

combustion behavior of iron particles that is suspended in air. In their work, they considered the 

combustion zone propagating through an iron particle cloud and the combustion behavior of 

individual iron particles by using high-speed photomicrographs. They concluded that each iron 

particle combusts at the combustion zone without gas phase flame and the burn-out time is 

proportional to the diameter of iron particle when the particle diameter is not so large. Haghiri 

and Bidbadi [2] applied the principle of flame propagation to study the dynamic behavior of 

particles by considering a two-phase mixture which consists of micro-iron particles and air by 

considering the effect of thermal radiation. They obtained results which show that the considered 

thermal radiation plays a significant role in the improvement of vaporization process and burning 

velocity of organic dust mixture, compared with the case where this effect is correspondingly 

neglected. Liu et al. [3] adopted a combustion chamber as a space to investigate flame 

propagation through hybrid mixture of coal dust and methane under a standard atmosphere. A 

steady, uni-dimensional theoretical analysis of flame propagation mechanism through micro-iron 

dust particles based on dust particles’ behavior with meticulous attention on the thermophoretic 

external forcing agent and under small Knudsen numbers is presented by Bidabadi et al. [4]. A 

mathematical model for studying and analyzing the structural properties of flame propagating 

through a two-phase mixture that consists of organic fuel particles and air is performed by 

Haghiri and Bidabadi [5]. They went further as compared to previous analytical studies by 

considering the thermal radiation effect which has not been attempted before. Recently, Hatami 

et al. [6] solved the nonlinear energy equation that resulted from Bidabadi and Mafi’s work on 

particle combustion modeling [6] by applying the semi-analytical method, differential 

transformation method (DTM) and BPES. They flagged up equations for calculating the 

convective heat transfer coefficient and burning time especially for iron particles. Polynomial 

expansion methods (PEM) are widely used in many mathematical and engineering fields to 

ascertain vital results for both numerical and analytical analysis. Among the most frequently 

applied polynomials, weighted residual methods (WRMs) are one of the vital tools as a result of 

their simplicity and high accuracy when verified with other schemes. WRMs have examples 

which includes Galerkin, Collocation and least square. Stern et al. [7] used one of the examples 

of the WRMs called the collocation method for solving a third order linear differential equation. 

Vaferi et al. [8] have investigated the feasibility and continuity of applying of orthogonal 

collocation method to solve diffusivity equation in the radial unsteady flow system. Recently 

Hatami et al. [9] used collocation and Galerkin methods to study and perform heat transfer 

analysis through porous fins. The results obtained in the work was found to agree with existing 

ones. Aziz and Bouaziz [10,11] introduced least square method and used the method to obtain 

meaningful results for predicting the performance of longitudinal fins. It was later observed that 

least squares method is simple compared with some other analytical methods. Shaoqin and 

Huoyuan [12] obtained and used least-squares approximations for the constant density magneto-

hydrodynamic equations also Hatami et al. [13–15], Hatami and Ganji [16–18], Hatami and 
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Domairry [19,20] and Ahmadi et al. [21] applied these analytical methods in different 

engineering problems. Saedodin and Shahababaei [22] applied homotopoy perturbation method 

(HPM) to study and analyze heat transfer in longitudinal porous fins while Darvishi et al. [23] 

and Moradi et al. [24] and Ha et al. [25] utilized homotopy analysis method (HAM) to obtain 

close form solution to the natural convection and radiation in a porous and porous moving fins. 

Also, Sobamowo et al. [26] applied homotopy perturbation method to analyze convective-

radiative porous fin with temperature-dependent, internal heat generation and magnetic field. 

They presented interesting results and the validation of their work proves the efficiency of the 

scheme. 

Adomian decomposition method (ADM) for solving linear and nonlinear differential equations 

has fast gained ground as it appeared in many engineering and scientific research papers [27–38]. 

It provides excellent approximations to the solution of non-linear equation with high accuracy.  

Therefore, in this work, Adomian decomposition method is applied to determine the temperature 

profile of iron particle during combustion. Parametric studies are carried out using the developed 

analytical solutions.  

2. Problem description and governing equation. 

Consider an iron spherical particle, Fig. (1) which is combusted in the gaseous oxidizing medium 

as a result of high reaction with oxygen which acts as an oxidizer. 

 
Fig. 1. Schematic of combusted iron particle in gaseous media (Hatami et al 2014). 

The assumptions used includes: 

(a) particle is considered to have constant temperature (Isothermal) 

(b) the Biot number is small (Bi << 0.1) 

(c) lumped system analysis is applied, (T = T(t), T ≠ T(r)) 

(d) the spherical particle combusts in an ambient medium. 

(e) interactions with other particles is neglected. 

(f) forced convection effect are neglected. 

(g) constant thermo-physical properties for the particle and ambient gaseous oxidizer  

(h) particle surface is assumed to be gray  
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(i) The surface reaction rate is treated as temperature independent with a constant convection 

heat coefficient. 

By incorporating the above assumptions and performing energy balance: 

in out gen

p

dE
E E E

dt

 
    

 
 (1) 

where Ein is the rate at which energy enters the system as a result of the absorption of total 

radiation at the particle’s surface from the environment, Eout is the rate at which energy leaves the 

system by convection mechanisms on the particle’s surface and thermal radiation which emits 

from the outer surface of particle, Egen is the rate of internal heat generation inside the particle 

due to the burning or combustion process and equals to the released heat from the chemical 

reaction, and (dE/dt) shows the rate of total energy changes in the particle. These energy terms 

may be represented as shown below: 

4
in s s surrE A T   (2) 

  4
out conv s s s s sE h A T T A T   

 (3) 
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 (4) 
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V c

dt dt


 
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   (5) 

By substituting the Eqs. (2) - (5) into Eq. (1), 

  4 4

comb

o s
ps s surr conv s s s s s s p p p

dT
A T h A T T A T R A h V c

dt
           (6) 

In order to improve Eq. (6), the following assumptions are used: 

(i) Kirchhoff’s law is invoked, hence the surface absorptivity (α) and the emissivity (ε) at a given 

temperature and wavelength are equal. 

(ii) Ignition temperature is used as the initial condition. (T(0) = Tig) 

(iii) Particle density is temperature dependent with a linear form that can be expressed as: 

   , 1p p pT T T           

Applying the above assumptions, Eq. (6) becomes, 

     4 4

, 1 0
comb

os
pp p p conv s s s s s surr s

dT
T T V c h A T T A T T R A h

dt
                 (7) 

Introducing the following dimensionless parameters, 
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Using Eq. (8) in Eq. (7), the dimensionless form of Eq. (7) becomes, 

   4 4

1 1 11 0,surr

d d

d d

 
         

 
          (9) 

with initial condition, 

 0 1.   (10) 

3. Principle of adomian decomposition method  

The principle of the method is described as follows. The general nonlinear equation is in the 

form 

Lu Ru Nu g    (11) 

The linear terms are decomposed into L + R, with L taken as the highest order derivative which 

is easily invertible and R as the remainder of the linear operator of less order than L. where g is 

the system input or the source term and u is the system output, Nu represents the nonlinear terms, 

which is assumed to be analytic. L-1is regarded as the inverse operator of L and is defined by a 

definite integration from 0 to x, i.e. 

1

0
[L ]( ) ( )

x

f x f v dv    
(12) 

If L is a second-order operator, then L-1 is a two ford indefinite integral i.e.  L-1 could be 

expressed as 

1

1 0
[L ]( ) ( )

x x

f x f v dvdv     (13) 

Applying the inverse operator L-1to the both sides of Eq. (11), and using the given conditions, 

the resulting equation could be written as 

1 1( )u x L Ru L Nu      (14) 

Where 1( ) xx L g     and λx represents the term arising from integrating the source term g(x). 

The Adomian methods decomposes the solution u(x) into a series  

0

m

m

u u




  (15) 
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and the nonlinear term into a series  

0

m

m

Nu A




  (16) 

Where Am’s are Adomian’s polynomials of u0 ,u1, ..., um and are obtained for the nonlinearity Nu 

= f(u)from the recursive formula 
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Where ζ is a grouping parameter of convenience. 

The Adomian decomposition method defines the solution of the function f(x) to be approximated 

as 

 
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
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  (18) 

Applying the principle of ADM to Eq. (5), we have 
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where  1
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Grouping and re-representing the coefficients, 
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The leading term will be obtained from the term which is either a constant or a function of the 

independent variable.  

1

0 4 4 4dL c         (21) 

using the initial condition, 

0 41     (22) 

The remaining terms may be determined from, 
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Representing the non-linear terms with their corresponding Adomian variable, we have: 
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where the Adomian variables are define as, 
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For the problem at hand, 1 4p q and r   . 

For the sake accuracy, 16 Adomian terms were generated for both cases as shown in the 

Appendix 

The term-by-term solutions to the temperature history after incorporating the generated Adomian 

terms is, 
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Following the definition of ADM, the general solution is: 
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4. Results and discussion 

Table 1 depicts the verification of the analytical scheme used with a numerical forth order 

Runge-Kutta. A good agreement with the numerical method was obtained.  

Table. 1 
Comparison of ADM results with a numerical method for a 20μm iron particle 

τ                          θ (τ) for a Particle diameter of (μm)                                                                    

                              Numerical                                     ADM                                      

0.0  1.000000000000000  1.000000000000000 

0.1  1.113333969181095  1.113333981177264 

0.2  1.215117348008129  1.215117711150980 

0.3  1.306590963764452  1.306593345739770 

0.4  1.388844932815013  1.388852820269113 

0.5  1.462843666959360  1.462858827578177 

0.6  1.529449065177065  1.529458070391791 

0.7  1.589444597054137  1.589387100510296 

0.8  1.643562984179010  1.643271057270020 

0.9  1.692520185796611  1.691615617727115 

1.0  1.737058395009000  1.734792471017498 
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4.1. Effect of particle diameter on the temperature profile 

Fig. 2 depicts the effect of the combusting particle diameter on temperature profile and burning 

rate. From the graphs, it can be easily seen that particle diameter has evident influence on the 

temperature profile. A particle with 60μm diameter was observed to possess a higher temperature 

profile which means that an increase in the combusting particle diameter causes a corresponding 

increase in the temperature profile as well as the burning time. As a result of this evident impact, 

the particle diameter may be used as a controlling agent in reducing the hazardous effects that 

normally propagate from iron particle combustion. 

 
Fig. 2. Effect of particle diameter on the temperature Profile with ADM 

4.2. Effect of 1 and 2 on the temperature profile 

Fig. 3 and Fig. 4 depict the influence of 1  and 2 on the temperature profile. From the figures, it 

can be seen that increasing 1  and 2 decreases the combustion temperature with this effect more 

pronounced with 2 . The decrease in combustion temperature with a corresponding increase in 1  

and 2 is as a result of an increase in the radiation heat transfer term in the combustion particle. 
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Fig. 3. Effect of 1 on the temperature profile. 

 
Fig. 4. Effect of 2 on the temperature profile. 

4.3. Effect of the heat realized parameter and surrounding temperature on the temperature 

profile 

Fig. 5 and Fig. 6 depict the influence of the heat realized parameter and the surrounding 

temperature on the combustion temperature. From the plots, we can conclude that increasing the 

heat realized parameter and the surrounding temperature increases the combustion temperature. 

This increase is significant for the heat realized parameter variation than that of the surrounding 

temperatures except for high values of surrounding temperature. 

 
Fig. 5. Effect of heat realized term on the temperature profile. 
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Fig. 6. Effect of surrounding temperature on the temperature profile. 

5. Conclusion 

In this work, Adomian decomposition method has been used to developed analytical solution to 

transient combustion analysis for iron micro-particles in a gaseous oxidizing medium. The 

results of the ADM were verified numerically. Also, parametric studies were performed to fully 

understand how the combusting particle diameter, density, radiative term, heat realized term and 

other parameters affect the burning time as well as the combustion temperature. The results 

revealed that by increasing the heat realized parameter, combustion temperature increased until a 

steady state was reached. It is hoped that the present study will enhance the understanding of the 

combustion of the particle and also obviate the challenges facing industries on combustion of 

metallic particles such as iron particles as well as in the determination of different particles 

burning time. 
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Appendix 

The Adomian polynomials for the first non-linear terms are 
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Also, the Adomian polynomials for the second non-linear terms are 
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