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This paper describes formulation for calculation of actual 

through thickness temperature variation followed by stress 

and displacement analysis of all-around simply supported 

functionally graded (FG) laminate using a semi-analytical 

approach. This approach has depended on a two-point 

boundary value problem (BVP) governed by first-order 

ordinary differential equations (ODEs). Developed 

formulation carries the advantage of both elasticity solution 

as well as ESL or approximate theories. This new model 

capable of providing accurate results without any 

approximation along the thickness of FG laminate. Material 

properties like heat conductivity, modulus of elasticity and 

thermal expansion coefficient are considered to be varied by 

a power law. The numerical investigation has been 

performed to examine thermal loading response on the FGM 

laminate and transverse loading applied on the laminate's top 

surface. The results are obtained for two types of thermal 

loading, obtained by heat conduction formulation received 

by developed semi-analytical approach and another with 

assumed power law variation and compared with each other. 

Leads outcomes from parametric studies, which will be 

helpful for further research in this area. 
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1. Introduction  

Layered composite materials are extensively used in the automotive industry due to their 

significant characteristics like high stiffness, long fatigue life, wear resistance, strength to weight 

ratio, etc. These layered composite materials are subjected to residual stress concentration, 

matrix cracking, delamination etc., problems. For avoiding these problems, a modern class of 

materials/stuff has been invented called functionally graded material (FGM), generally made up 

of ceramic on one side and metal on another side. This FGM act as a barrier between high 

temperature and low temperature on either surface. Metal provides high strength along with 

elasticity, and ceramic provide thermal insulation to the FGM. 

Many analysts have committed to the response of functionally graded (FG) plates by applying 

either 3D theories or ESL theories. Vel and Batra [1] developed a three-dimensional (3D) 

mathematical solution to capture a simply supported FG plate's static deformation. The study was 

carried out for transient thermal load. Further, the classical plate theory (CPT), which avoids 

normal and shear deformation, applicable for a thin plate, was introduced. Using this method, 

Javaheri and Eslami [2] calculate the FG plate's buckling load for uniform, linear/nonlinear 

temperature variation. The application of the finite strip method along with CPT for buckling 

load calculation has been considered by Ghannadpour et al. [3]. For overcoming the potholes of 

CPT, first-order shear deformation theory (FOST) has invented. Damanpack et al. [4] assume 

straight-line variation of in-plane displacements in the depth direction; here, shear correction 

factors need to use. Shen [5] used FOST and a mixed Galerkin perturbation technique for 

calculating the nonlinear bending behavior of the FG plate. This FG Plate was subject to uniform 

and sinusoidal thermal load. Lanhe [6] carried out buckling load calculations under a stable 

temperature environment. With the help of the element-free Galerkin methodology and FOST, 

Dai et al. [7] study the FG plate's dynamic response with piezoelectric sensors and actuators. 

Nguyen [8] developed a FOST model to decide the shear correction factors for FG and sandwich 

FG plates. 

To eliminate the need for shear correction factors, higher-order shear and normal deformation 

theories (HOSNT) have generated, considering the expansion of displacement components in 

power series. Yang and Shen [9] studied the nonlinear flexural response of the FG plate with 

higher-order shear deformation under constant temperature rise. Here elasticity constant, 

passion's ratio and thermal expansion coefficient assume to change as per power law. Zenkour 

[10] used generalized shear deformation theory to study FG plate HOST's bending behavior and 

formulated equilibrium and stability equations. This formulation was further decoupled by Saidi 

and Jomehzadeh [11]. Kadoli et al. [12] used HOST to study the effect of loading position on the 

ceramic and metal face of the FG laminate. Mantri et al. [13] presented a new HOST for the 

bending response of the FG plate. Kant et al. [14] used HOSNT associated with eleven degrees 

of freedoms (DOFs) for stress analysis and free vibration of the FG plate. 

Cubic variation of shear deformation theory has been developed for considering transverse shear 

deformation impacts and for fulfillments of zero traction boundary conditions. Using this theory, 

Ferreria et al. [15] obtained the static analysis results, which has correlated with the Meshless 
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method's outcomes. Akbarzadeh et al. [16], with TSDT, achieved an FG plate response for 

uniform mechanical and dynamic loading. Wu and Li [17] obtained a reaction of the FG plate for 

sinusoidal loading. Further, Xing et al. [18] worked on the same area with the n
th 

order theory. 

All these researchers considered material variation as per power-law. 

Research of Functionally graded plates in sandwich form has been conducted by many 

researchers. The base footing performs a major role in structural stability. The static behavior of 

advanced FG ceramic-metal plates supported on a flexible foundation and exposed to hygro-

thermo-mechanical loading has been documented by Tounsi et al. [19]. Chikr et al. [20] 

presented modified shear deformation theory in trigonometric form and analyzed the FG 

sandwich plate supported by a flexible footing base with various parameters and support 

conditions. Later on, Refrafi [21] emphasized on buckling behavior of FG sandwich plate resting 

on flexible footing subjected to moisture, thermal and mechanical loading. Boussoula et al. [22] 

have applied shear deformation theory to examine FG sandwich plates' thermomechanical 

bending behavior by assuming E-FGM, P-FGM and S-FGM. Many examiners have also studied 

the dynamic behavior of FG materials. FG nano-plate with simple support has been analyzed for 

free vibration with nonlocal integral refined plate theory by Balubaid et al. [23]. Static and free 

vibration analyses for functionally graded pours sandwich plate on a flexible footing by a quasi- 

3D hyperbolic shear deformation formulation have been carried out by Kaddari et al. [24]. Here, 

along with other parameters porosity effect has been primarily discussed. 

Interface study has another approach to study smart materials. Delamination, stress 

concentration, the requirement of smooth variation of temperature can be achieved with this 

approach below the melting point at the interfaces. Roy [25] used a multiphase PF approach to 

study barrierless nucleation for nitramine octahydro1,3,5,7-tetranitro 1,3,5,7-tetrazocine crystal. 

A similar approach of phase transition has also been studied by a group of few scientists, Henson 

et al. [26], Smibwitz et al. [27], Bowlan et al. [28] and Levitas et al. [29] etc. 

Examine through past earlier documentation and realization of work done on FG materials uptilts 

and it has been observed that less literature is available for thermomechanical analysis of FG 

materials. Most researchers considered assumed thermal through thickness variation either 

constant, linearly varying, as per exponential, as per power law or as per sigmoid law. It has also 

been verified as very few studies have carried out with actual temperature distribution as per heat 

conduction law. Here, an attempt has been made to determine through thickness actual 

temperature profile by heat conduction law by developing novel semi-analytical formulation 

followed by stress analysis. This analysis is an extension of the semi-analytical formulation 

developed by Kulkarni and Pendhari [30] for FG 2D laminate. Here, simultaneously, bending 

stress analysis has been carried out for assumed power law variation (as most researchers 

considered), and it has compared with exact variation to verify the importance of the actual 

temperature profile. 

The required elasticity and heat conduction formulations have considered here for the 

development of semi-analytical methods, includes illustrating two-point BVP governed by a 

group of coupled first-order ordinary differential equations (ODE's) (Equation 1) along with the 

thickness of a laminate on a basis from Kantorovich and Krylov [31] approach. 
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 
     

dy z
D z y z p z

dz
   (1) 

Thermal loading has been determined as per the heat conduction equation and designed to access 

actual temperature variation. Further through the thickness, thermal change as per simple power 

law has considered. Material properties here are considered varied as per power law and 

Poisson's ratio has remained the same throughout the domain. 

2. Mathematical formulations 

A linearly flexible square/rectangular simply supported FG laminate of plan dimensions (a) and 

(b) and homogenous depth (h) is as indicated in Figure 1. It has been subjected to arbitrarily 

distributed thermo-mechanical loading at the upper surface and the downward surface is held 

traction-free and appearing as the reference temperature. The coefficient of thermal expansion 

  , Elastic modulus  E , and coefficient of thermal conductivity    have varied only through 

the thickness of laminate accordingly to a power law as, 
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 (2) 

Where, bE  and tE
 be Young’s elasticity constants, b and t  be constant of thermal expansion, b

and t are the coefficient of thermal conductivity at the lower and upper face of the laminate, 

respectively. 

Next, it has been assumed that the FG material is homogenous and the ratio of lateral strain 

versus linear strain is assumed to be constant throughout the thickness. 

3. Semi-analytical formulation for 3-dimensional heat conduction 

FG materials are mainly used in the environment where structures are experiencing large 

temperatures. Hence, accurate determination of structural responses is of the utmost importance. 

This section is devoted to the discussion of the closed-form formulation for the 3D heat 

conduction equation. A thermal load and heat flux as defined in Eqn. (3) is assumed with only 

known temperature values at the top and bottom of the laminate surface 

   at  0   and    at  b tT T z T T z h    . 

   
1 1

( , )  sin sin             ( , )  sin sin  z z

m m

m x n y m x n y
T x z T z q x z q z

a b a b

    

 

    (3) 



74 S. P. Kulkarni, S. S. Pendhari/ Computational Engineering and Physical Modeling 4-3 (2021) 70-98 

 
Fig. 1. FG 3D laminate exposed to thermal loading. 

A governing two-dimensional (3D) steady-state heat conduction equation without internal heat 

generation is, 

     2 2 2

2 2 2

, , ,
( ) ( ) ( ) 0

T x z T x z T x z
z z z

x y z
 

  
  

  
 (4) 

As per heat conduction law given by Fourier, heat flux in x, y and z directions are as below 

 
 

 
 

 
 , , ,

, ( )  ,  , ( )  ,  , ( )x y z

T x z T x z T x z
q x z z q x z z q x z z

x y z
  

  
     

  
 (5) 

where,  iq = heat flux along x, y and z-axis ( i  = x, y, z) in 2Wm  

And, with the consideration, the heat flow maintains the amount of total heat in element zero, the 

equilibrium equation in 3D, 

( , )( , ) ( , )
0

yx z
q x zq x z q x z

x y z

 
  

  
 (6) 

Two variables, viz. temperature field  T  and heat flux  zq  are assumed as the primary 

variable. With the help of algebraic simplification of the Eqns. (5) and (6) a set of PDEs 

consisting of only two primary variables zq  and T  are obtained. 

 
 

     2 2

2 2

, , , ,1
,                 ( ) ( )
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z
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
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 (7) 

Substituting Eqn. (3) and its differential coefficients into Eqn. (7). The set of the first-order 

ODEs obtained as, 

2 2 2 2

2 2

( )( ) 1
( )                              ( ) ( )z

z

dq zdT z m n
q z z T z

dz dz a b

 




 
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 
 (8) 

An equation has given the governing two-point BVP in ODEs in the field with the known 

temperature at the upper and lower FG laminate surface. (8). 
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4. The semi-analytical formulation for 3-dimensional stress analysis 

As per the basic linear theory of elasticity, three-dimensional (3D) strain-displacement 

relationship, equilibrium equations, and constitutive relations in the thermo-elastic environment 

can be given as, 

                                        

                  

x y z
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u w v w u v
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 (11) 

Here ,x yT T  and zT are the thermal expansions generated due to thermal change without 

constraints and , ,x y zB B B  are the forces acting per unit volume in x, y and z-direction, respectively 

generally called body forces, which has ignored in the numerical examination for the sake of 

simplicity. Material coefficients ijC are elastic constants, and for the FG material a constitutive 

relation can be given as, 

2 2

11 22 33 12 13 23 44 55 662 3 2 3

( )(1 ) ( )( ) ( )
             

(1 3 2 ) (1 3 2 ) 2(1 )

E z E z E z
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    

 
        

    
 (12) 

The above Eqns. (9), (10) and (11) contain eight unknowns in eight equations which have as 

, , , , , ,  , , , , , , ,   u v w and
x y z x y z xy xz yz xy xz yz

            . After a simple algebraic 

reduction/manipulation of the basic elasticity equations, a set of PDEs includes only six 

dependent variables ,  ,  ,  ,   and z xz yzu v w     gained as below, 
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(13) 

With the help of boundary conditions at the support 0 and x a  and Fourier trigonometric series 

expansion, the PDE's given in equation (13) can convert into coupled first-order ODE as, 
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and from the fundamental relations of the theory of elasticity, it can be shown that, 
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Further, applied transverse loading on the top of the FG laminate and temperature change along 

the x-direction is also given in the sinusoidal form as 
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Putting Eqns. (14), (15) and (16) and it is differential coefficients into Eqn. (13) Ordinary 

differential equations (ODEs), as mentioned in equation (17), have been received. 
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 (17) 

Eqn. (17) represents the governing two-point BVP in ODEs in the domain 0 z h   with stress 

components known at the top and bottom surfaces of an FG laminate. 

In the absence of a boundary layer effect, the numerical integration of the BVP has been defined 

in Eqns. (8), (17), and the related peripherical conditions can transform into a set of IVP's one 

non-homogeneous and 
2

n  homogeneous, equal to 2 and 4 for heat conduction and stress 

analysis formulation, respectively. BVP transformation to IVP for thermal and stress analysis has 

tabulated in Tables 1 and 2 successively. After this formation of a linear mixture of one non-

homogeneous and 
2

n  homogeneous solution, fulfilling boundary conditions z h  have been 

solved. These give rise to 
2

n  linear algebraic equations, which determine the unknown 
2

n  

components at the starting edge 0z  . Then a final numerical integration of Eqns. (8) (16) 
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represents the required outputs. The fourth-order Runge-Kutta technique has been applied here 

for numerical integration. 

Table 1 

Transformation of BVP into IVP's for thermal analysis 

Integration No. 
Bottom edge (𝑧 = 0) Top edge (𝑧 = ℎ) 

𝑇(𝑧) 𝑞𝑧(𝑧) 𝑇(𝑧) 𝑞𝑧(𝑧) 

1 Known 
0 

(Assumed) 
M11 M21 

2 
0 

(Assumed) 
1 

(Assumed) 
M12 M22 

3 
(Final) 

𝑇(0) 
(known) 

K1 𝑇(ℎ) (known) 𝑞𝑧(ℎ) 

 

5. Numerical studies 

Determination of exact thermal spreading through the depth of FG laminate and perform thermal 

stress analysis with present formulation; a computer code has developed. For validating 

generated computer code, stress analysis has been carried out for laminate subjected to 

mechanical loading with intensity 0 1.0 P MPa  
at the laminate's top. Obtained outputs have 

compared with Zenkour (2006) third-order shear deformation theory and Mantri's (2012) higher-

order shear deformation theory, which has tabulated in Table 3 and close agreement between 

values has been observed. For the numerical study, reference temperature at the lower and upper 

surface of the FG plate has been considered 020 C and 0300 C  respected. As listed in table 4, 

three material sets have supposed to examine the effect of material gradation on temperature 

distribution. Various power indices (k) have considered from ceramic to metal variation of 

material gradation within thickness. Based on convergence studies, around 20 to 30 steps have 

been used through the thickness of laminate for numerical integration. Distribution of actual 
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temperature compared with assumed temperature as per power law variation through FG plate 

depth with equal dimension for all material sets (aspect ratios 5 to 50) has plotted in figures 2,3 

and 4. Moreover, to observe the effect of a different side to length ratio  b
a

, a comparison of 

actual and assumed temperature variation had depicted in figure 5 only for material set B. 

From graphs 2,3,4 and 5, it has been seen that the exact temperature profile for all aspect ratios 

for a particular k index follows the same pattern, there has no or little variation observed from 

thin to thick plate consideration. For power index (k) is 0 and 1, the Model 2 assumed 

temperature profile overestimates the Model 1 actual temperature profile. For power index (k) 2 

and 4, both this variation partially coincides with each other, and further for power index (k) 8 

and 10 assumed temperature profile by Model 2 underestimate Model 1 actual temperature 

profile. This observation has valid for all material sets. It is worth to be noted that Model 2, 

through thickness temperature variation, remains almost constant for power index, k=0, and for 

power index, k=1, it turns to be perfectly linear. 

Further, it has taken the higher-order curve's shape as the power index increases (k=1,4,8 and 

10). However, Model 2, through thickness temperature distribution, was noted to be linear for 

power index k=0 and further changes to higher-order curve for power index, k=1, 2, and 4. 

However, for the power index, k=8, and 10, this variation is nearly linear again. Again, these 

observations have valid for all material properties and in-plane aspect ratios (b/a). 

Determination of through thickness thermal stress variation for exact (Model 1) and with 

assumed power law (Model 2) temperature profile, a computer code has developed. For 

comparison of obtained results following normalization coefficient have used, 

 

(18) 

Obtained results have been tabulated in tables 5, 6, and 7 for square plate material sets A, B, and 

C, respectively, simultaneously for rectangular plates in tables 8, 9, and 10. Table 5 noted that the 

average percentage difference between Model 2 and Model 1 for in plane displacement  u  is 

30% for transverse movement  w  46%, for in normal plane stress  x  66%, for in plane shear 

stress  xy  is 30% and for transverse shear stress  xz is 53%. Further from table 5 and table 6, 

it has been observed that these percentage variations outcomes decrease for material group B and 

increases for material group C. 

By observing values in tables 8, 9 and 10, some observations have been documented. Average 

percentage variation between Model 2 and Model 1 results in plane displacements  ,u v , in the 

plane, direct stress in the y-direction ( y ), and for in plane shear stress has ( xy ) not more. For 
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in plane normal stress in the x-direction ( x )and transverse shear stress ( ,xz yz  ) shows 

variations in values; similarly, it has also been observed that transverse displacement  w  

remains silent. These have valid for all material sets considered for the study. 

Through thickness variation of thermal stress analyses for Model 1 and Model 2 have depicted in 

figure 6 to 10 for in plane displacement  u , transverse displacement  w , in the plane, direct 

stress  x , in the plane, and transverse shear stresses  ,xy xz  , respectively. Plate with material 

set B with equal dimension has only been considered for demonstration of results in Figure. 

From figure (6 to 10), It is worth noting that there is a significant difference in thermal stress 

analyses performed for actual and assumed temperature variation along with the depth of the 

plate. The notable differences in numerical results are less for moderately thick plates  10s 

than reasonably thin and thin plates. Also, material dependency has been observed in numerical 

results. In the present analysis, material set B is more sensitive than material sets A and C for all 

displacement and stresses parameters. There is the impact of power index (k) on numerical 

values. More overestimation underestimation has been noted for power index (k) represented 

ceramic class of material almost for all displacement and stress variables. However, more or less, 

the same pattern of variations has been observed in all figures for Model 1 and Model 2 analyses 

except for transverse shear stress  xz , which has been depicted in figure 10, showing exact 

opposite stress patterns. The laminate's thickness has a governing parameter for stress analysis; a 

thick laminate is more susceptible to temperature changes. Hence shows more error in Model 1 

and Model 2 outputs than the moderately thick and thin laminates. 

Table 3 

Normalized in-plane and transverse displacements  ,u w , in-plane normal and shear stresses 

,xx xy    and transverse shear stresses  xz of square FG laminate under bi-directional transverse 

sinusoidal loading for side to thickness ratio 10 for Mechanical Loading for material set B. 

Quantity Theories k 

0 1 2 4 8 10 

4

h
u
 
 
 

 
Model 1 0.2198 0.6436 0.9012 1.0541 1.0820 1.0840 

Zenkour [2006]
 a 

0.2309 0.6626 0.9281 1.0941 1.1340 1.1372 

Mantari et al. [2012]
 b
 - 0.6398 0.8957 1.0457 1.0709 - 

(0)w  
Model 1 0.2940 0.5870 0.757 0.8822 0.97Z 1.0070 

Zenkour [2006]
 a
 0.2960 0.5889 0.7573 0.8819 0.975 1.0089 

Mantari et al. [2012]
 b
 - 0.5880 0.7564 0.8814 0.9737 - 

3
x

h


 
 
 

 Model 1 2.0043 3.097 3.6247 4.0838 4.7555 5.0660 

Zenkour [2006]
 a
 1.9955 1.4894 1.3954 1.1783 0.9466 5.0890 

3
xy

h


 
 
 

 
Model 1 0.6826 0.6830 0.5115 0.5623 0.5840 0.6016 

Zenkour [2006]
 a
 0.7065 0.6110 0.5441 0.5667 0.5856 0.5894 

Mantari et al. [2012]
 b
 - 0.6112 0.5438 0.5662 0.5850 - 

6
xz

h


 
 
 

 
Model 1 0.2383 0.2382 0.2256 0.2175 0.2166 0.2166 

Zenkour [2006]
 a
 0.2462 0.2622 0.2763 0.2580 0.2121 0.2198 

Mantari et al. [2012]
 b
 - 0.2566 0.2741 0.2623 0.2140 - 

Note: Zenkour [2006]
 a
 =Generalized TSDT and Mantari et al. [2012]

 b
 = HSDT 
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Table 4. Material Properties 
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Fig. 2. Comparison between through thickness exact temperature variation and power law variation for 

different power index (k) for square laminate material set A. 
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Fig. 3. Comparison between through thickness exact temperature variation and power law variation for 

different power index (k) for square laminate material set B. 
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Fig. 4. Comparison between through thickness exact temperature variation and power law variation for 

different power index (k) for square laminate material set C. 
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Fig. 5. Comparison between through thickness exact temperature variation and power law variation for 

different power index (k) for square laminate (b/a=1) and rectangular laminate (b/a=1.5,2.0,2.5,3.0) material 

set B. 
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Fig. 6. Thickness variation of normalized in plane displacement ( u ) for different material graded FG square 

laminate for material set B. 



92 S. P. Kulkarni, S. S. Pendhari/ Computational Engineering and Physical Modeling 4-3 (2021) 70-98 

0

0.2

0.4

0.6

0.8

1

-0.12 -0.08 -0.04 0 0.04 0.08 0.12 0.16

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

0.04 0.08 0.12 0.16 0.2

0

0.2

0.4

0.6

0.8

1

0.04 0.08 0.12 0.16 0.2

z

 , ,
2 2

a bw z

  Model 1  S=5
  Model 2  S=5
  Model 1  S=10
  Model 2  S=10

K = 0

z

 , ,
2 2

a bw z

  Model 1  S=5
  Model 2  S=5
  Model 1  S=10
  Model 2  S=10

 K = 1

z

 , ,
2 2

a bw z

  Model 1  S=5
  Model 2  S=5
  Model 1  S=10
  Model 2  S=10

K = 2

z

 , ,
2 2

a bw z

  Model 1  S=5
  Model 2  S=5
  Model 1  S=10
  Model 2  S=10

 K = 4

z

 , ,
2 2

a bw z

  Model 1  S=5
  Model 2  S=5
  Model 1  S=10
  Model 2  S=10

 K = 8 z

(a) (b)

(c) (d)

(e) (f)

 , ,
2 2

a bw z

  Model 1  S=5
  Model 2  S=5
  Model 1  S=10
  Model 2  S=10

 K = 10

 
Fig. 7. Thickness variation of normalized Transverse displacement ( w ) for different material graded FG 

square laminate for material set B. 
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Fig. 8. Thickness variation of normalized Transverse displacement ( x ) for different material graded FG 

square laminate for material set B. 
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Fig. 9. Thickness variation of normalized Transverse displacement ( xy ) for different material graded FG 

square laminate for material set B. 
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Fig. 10. Thickness variation of normalized Transverse displacement ( xz ) for different material graded FG 

square laminate for material set B. 
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6. Concluding remarks 

This paper attempts to capture the actual temperature profile through the laminate thickness due 

to the heat conduction formulation. Here temperature causing stress analysis has been performed 

for both exact temperature profile and power law varying temperature profile with the semi-

analytical formulation. This semi-analytical formulation discussed here has based on a two-point 

boundary value problem (BVP), which has depended on first-order differential equations 

(ODE's). Comparison between exact and assumed temperature profiles had been documented for 

various material sets, different aspect ratios, different power indices (k), and width to length 

ratios changing from thick to thin, square to rectangular laminate. In the current study, the 

material property's effect has been noted on the thermal profile, whereas the aspect ratio does not 

impact it. From the thermal stress analysis, it has to be noted that the exact determination of 

thermal profile is of utmost importance since material property, aspect ratios, power indexes (k), 

etc., parameters have a specific impact on stress analysis. A significant difference in numerical 

results between thermal stress analyses was observed for exact and assumed temperature 

profiles. The semi-analytical approach presented here has the advantage of both analytical and 

numerical methods, which help achieve simplicity and accuracy simultaneously, leading to 

avoiding complex 3D solutions. The present formulation is capable of handling only all-around 

simply supported laminate subjected to only distributed loading. In the future, the presented 

formulation can be possible to extend for FG laminates with various boundary conditions, 

multidimensional volume fraction change etc. Also, it is possible to handle other smart materials 

like a composite, sandwich, piezoelectric materials, etc., after few mathematical manipulations 

within the presented formulation. 
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