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1. Introduction

Layered composite materials are extensively used in the automotive industry due to their
significant characteristics like high stiffness, long fatigue life, wear resistance, strength to weight
ratio, etc. These layered composite materials are subjected to residual stress concentration,
matrix cracking, delamination etc., problems. For avoiding these problems, a modern class of
materials/stuff has been invented called functionally graded material (FGM), generally made up
of ceramic on one side and metal on another side. This FGM act as a barrier between high
temperature and low temperature on either surface. Metal provides high strength along with
elasticity, and ceramic provide thermal insulation to the FGM.

Many analysts have committed to the response of functionally graded (FG) plates by applying
either 3D theories or ESL theories. Vel and Batra [1] developed a three-dimensional (3D)
mathematical solution to capture a simply supported FG plate's static deformation. The study was
carried out for transient thermal load. Further, the classical plate theory (CPT), which avoids
normal and shear deformation, applicable for a thin plate, was introduced. Using this method,
Javaheri and Eslami [2] calculate the FG plate's buckling load for uniform, linear/nonlinear
temperature variation. The application of the finite strip method along with CPT for buckling
load calculation has been considered by Ghannadpour et al. [3]. For overcoming the potholes of
CPT, first-order shear deformation theory (FOST) has invented. Damanpack et al. [4] assume
straight-line variation of in-plane displacements in the depth direction; here, shear correction
factors need to use. Shen [5] used FOST and a mixed Galerkin perturbation technique for
calculating the nonlinear bending behavior of the FG plate. This FG Plate was subject to uniform
and sinusoidal thermal load. Lanhe [6] carried out buckling load calculations under a stable
temperature environment. With the help of the element-free Galerkin methodology and FOST,
Dai et al. [7] study the FG plate's dynamic response with piezoelectric sensors and actuators.
Nguyen [8] developed a FOST model to decide the shear correction factors for FG and sandwich
FG plates.

To eliminate the need for shear correction factors, higher-order shear and normal deformation
theories (HOSNT) have generated, considering the expansion of displacement components in
power series. Yang and Shen [9] studied the nonlinear flexural response of the FG plate with
higher-order shear deformation under constant temperature rise. Here elasticity constant,
passion's ratio and thermal expansion coefficient assume to change as per power law. Zenkour
[10] used generalized shear deformation theory to study FG plate HOST's bending behavior and
formulated equilibrium and stability equations. This formulation was further decoupled by Saidi
and Jomehzadeh [11]. Kadoli et al. [12] used HOST to study the effect of loading position on the
ceramic and metal face of the FG laminate. Mantri et al. [13] presented a new HOST for the
bending response of the FG plate. Kant et al. [14] used HOSNT associated with eleven degrees
of freedoms (DOFs) for stress analysis and free vibration of the FG plate.

Cubic variation of shear deformation theory has been developed for considering transverse shear
deformation impacts and for fulfillments of zero traction boundary conditions. Using this theory,
Ferreria et al. [15] obtained the static analysis results, which has correlated with the Meshless
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method's outcomes. Akbarzadeh et al. [16], with TSDT, achieved an FG plate response for
uniform mechanical and dynamic loading. Wu and Li [17] obtained a reaction of the FG plate for
sinusoidal loading. Further, Xing et al. [18] worked on the same area with the n'™ order theory.
All these researchers considered material variation as per power-law.

Research of Functionally graded plates in sandwich form has been conducted by many
researchers. The base footing performs a major role in structural stability. The static behavior of
advanced FG ceramic-metal plates supported on a flexible foundation and exposed to hygro-
thermo-mechanical loading has been documented by Tounsi et al. [19]. Chikr et al. [20]
presented modified shear deformation theory in trigonometric form and analyzed the FG
sandwich plate supported by a flexible footing base with various parameters and support
conditions. Later on, Refrafi [21] emphasized on buckling behavior of FG sandwich plate resting
on flexible footing subjected to moisture, thermal and mechanical loading. Boussoula et al. [22]
have applied shear deformation theory to examine FG sandwich plates' thermomechanical
bending behavior by assuming E-FGM, P-FGM and S-FGM. Many examiners have also studied
the dynamic behavior of FG materials. FG nano-plate with simple support has been analyzed for
free vibration with nonlocal integral refined plate theory by Balubaid et al. [23]. Static and free
vibration analyses for functionally graded pours sandwich plate on a flexible footing by a quasi-
3D hyperbolic shear deformation formulation have been carried out by Kaddari et al. [24]. Here,
along with other parameters porosity effect has been primarily discussed.

Interface study has another approach to study smart materials. Delamination, stress
concentration, the requirement of smooth variation of temperature can be achieved with this
approach below the melting point at the interfaces. Roy [25] used a multiphase PF approach to
study barrierless nucleation for nitramine octahydrol,3,5,7-tetranitro 1,3,5,7-tetrazocine crystal.
A similar approach of phase transition has also been studied by a group of few scientists, Henson
et al. [26], Smibwitz et al. [27], Bowlan et al. [28] and Levitas et al. [29] etc.

Examine through past earlier documentation and realization of work done on FG materials uptilts
and it has been observed that less literature is available for thermomechanical analysis of FG
materials. Most researchers considered assumed thermal through thickness variation either
constant, linearly varying, as per exponential, as per power law or as per sigmoid law. It has also
been verified as very few studies have carried out with actual temperature distribution as per heat
conduction law. Here, an attempt has been made to determine through thickness actual
temperature profile by heat conduction law by developing novel semi-analytical formulation
followed by stress analysis. This analysis is an extension of the semi-analytical formulation
developed by Kulkarni and Pendhari [30] for FG 2D laminate. Here, simultaneously, bending
stress analysis has been carried out for assumed power law variation (as most researchers
considered), and it has compared with exact variation to verify the importance of the actual
temperature profile.

The required elasticity and heat conduction formulations have considered here for the
development of semi-analytical methods, includes illustrating two-point BVP governed by a
group of coupled first-order ordinary differential equations (ODE's) (Equation 1) along with the
thickness of a laminate on a basis from Kantorovich and Krylov [31] approach.
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dy(z

d(z ):D(z)y(z)+ p(2) (1)
Thermal loading has been determined as per the heat conduction equation and designed to access
actual temperature variation. Further through the thickness, thermal change as per simple power
law has considered. Material properties here are considered varied as per power law and
Poisson's ratio has remained the same throughout the domain.

2. Mathematical formulations

A linearly flexible square/rectangular simply supported FG laminate of plan dimensions (a) and
(b) and homogenous depth (%) is as indicated in Figure 1. It has been subjected to arbitrarily
distributed thermo-mechanical loading at the upper surface and the downward surface is held
traction-free and appearing as the reference temperature. The coefficient of thermal expansion

(e, Elastic modulus (E), and coefficient of thermal conductivity (1) have varied only through

the thickness of laminate accordingly to a power law as,

E(z)=FE, + _(Et - Eb)(%ﬂ

Ae)=A (4 —%)(ﬁﬂ @)

a(2)=a, {(at —ab)(%jk:l

Where, B and® be Young’s elasticity constants, “»and ® be constant of thermal expansion, %

and *t are the coefficient of thermal conductivity at the lower and upper face of the laminate,
respectively.

Next, it has been assumed that the FG material is homogenous and the ratio of lateral strain
versus linear strain is assumed to be constant throughout the thickness.

3. Semi-analytical formulation for 3-dimensional heat conduction

FG materials are mainly used in the environment where structures are experiencing large
temperatures. Hence, accurate determination of structural responses is of the utmost importance.
This section is devoted to the discussion of the closed-form formulation for the 3D heat
conduction equation. A thermal load and heat flux as defined in Eqn. (3) is assumed with only
known temperature values at the top and bottom of the laminate surface

(T=T, at z=0 and T=T, at z=h).

T(x,2)= Z T( smTXsm% q,(x,2) = Z q, ( sm%sm% (3)
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Fig. 1. FG 3D laminate exposed to thermal loading.

A governing two-dimensional (3D) steady-state heat conduction equation without internal heat
generation is,

o°T (x,z o°T (x,2 o°T (x,2
/W)#HZ)(—) + M) —5— ( ) 4
As per heat conduction law given by Fourier, heat flux in x, y and z directions are as below
oT (X, z oT (X,z X,Z
Uy (% 2)=—A(2) ———= ( ) , 4, (x2)=-A(2) ———= ar(x2) . 0,(%,2)=-4(2) (z ) (5)

where, ;= heat flux along x, y and z-axis (I =x, y, z) in Wm™

And, with the consideration, the heat flow maintains the amount of total heat in element zero, the
equilibrium equation in 3D,

o9, (x,2) | aq, (x,2) L99,(x2) g (6)
X oy oz B

Two variables, viz. temperature field (T) and heat flux (q,) are assumed as the primary

variable. With the help of algebraic simplification of the Eqns. (5) and (6) a set of PDEs
consisting of only two primary variables (, and T are obtained.

a,(x2) 2T(x z) 0°T (x,2)

M) 1 o xz) e ROR e ™

oz Q)

Substituting Eqn. (3) and its differential coefficients into Eqn. (7). The set of the first-order
ODEs obtained as,

aT(z) 1 dg,(z) m’z>  n’z’?
R AC ' T
@ 4 o - AT e 1O

(8)

An equation has given the governing two-point BVP in ODEs in the field with the known
temperature at the upper and lower FG laminate surface. (8).



S. P. Kulkarni, S. S. Pendhari/ Computational Engineering and Physical Modeling 4-3 (2021) 70-98 75

4. The semi-analytical formulation for 3-dimensional stress analysis

As per the basic linear theory of elasticity, three-dimensional (3D) strain-displacement
relationship, equilibrium equations, and constitutive relations in the thermo-elastic environment
can be given as,

ou ov ow
& =— & =— & =—
OX oy 0z ©)
_ou ow N oW _ o
TG T T e Ty Ty T
ot
66X+ XyJraTXZJrBX:O
oXx oy oz
Jr, Oo, Ort,
= +—+—L+B =0 (10)
ox oy oz
ot
aTZX+ Zy+a()-Z+BZ:O
ox oy oz
o C 0 0 0o 1le,—aT
X 11 12 13 X X
e —a T
%y 22 Gy 00 ORIy
% _ Cyg 0 0 0} -, T (11)
Txy C44 0 0 )/Xy
T symmetric C55 0 Yyg
fvz| L C66_ v

Here o, T, T and o, T are the thermal expansions generated due to thermal change without
constraints and B,, B,, B, are the forces acting per unit volume in x, y and z-direction, respectively

generally called body forces, which has ignored in the numerical examination for the sake of
simplicity. Material coefficients C;are elastic constants, and for the FG material a constitutive

relation can be given as,

E(2)(1-0° E(2)(v+0?
C11:C22:C33: ()( ) C12:C13:C = ()( )

E(2)
(1-3v2 - 20°) Cu=Cos=Cg =

ST Y (12)
(1-3v"-2v%) 2(1+v)

The above Eqns. (9), (10) and (11) contain eight unknowns in eight equations which have as

U,V,W,SX,Sy,SZ, Ox: Oy O xy Vxa Vyzr Txy Txa and Ty - After a simple algebraic

reduction/manipulation of the basic elasticity equations, a set of PDEs includes only six
dependent variables u, v, w, o,, 7,, and 7, gained as below,
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C
ou__ ow.|_"e6 |,
oz OX Cc_..C Xz

55C66
c
@:‘@{%}’yz
oz oy | Cg5Ce6
O
%\QI:c_z_ci[cslg_i+csz%)+5_T(C31+C32+C33)
33 Ca3 33
Oty C13C310%u . %u C13C3p | 8%V
a2 |G 2 Caa— 27| %127 |3
z 33 ) ox oy 33 ) Oxoy
C 5 00 (C11+C12+Cy5) (13)
~ A3z 4| ¢
C.., ox 3 oT
33 C33(C31 32 +C33)

E
fyz :_(C L C23(:31} o%u . o _LC C23032J62v
21+Ca4 462" | “22
Coy | OX0Y ox Caq

(C13+Cyp+Crg)

C,, 0o
23" z,| ¢ oT
Co,p, Oy |__23 a
33 c (C31+C32+033)“'ay
33
0
60‘2 :_8rxz B Tyz
oz OX oy

With the help of boundary conditions at the support X=0 and a and Fourier trigonometric series
expansion, the PDE's given in equation (13) can convert into coupled first-order ODE as,

u(x, y,z) = ZUmn(z)cos—sm%

v(X,y,2) = van(z)sm—cosn%.y (14)

W(X,Y,2) = > W, (z)sin MZX gin MY
a

and from the fundamental relations of the theory of elasticity, it can be shown that,

mz X
TXZ(X y Z) ZTXZmn(Z)SIn_COST

7,(X,¥,2) =D 7, (2)sin X 0 7Y (15)
mn a‘

o,(X,y,2) = ZGZmn(z)smwsm?
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Further, applied transverse loading on the top of the FG laminate and temperature change along
the x-direction is also given in the sinusoidal form as

mrzy

(%,y,2) z pmnsm—xsmT

(16)
(X,y,2) ZT sm—sm mry

Putting Eqns. (14), (15) and (16) and it is differential coefficients into Eqn. (13) Ordinary
differential equations (ODEs), as mentioned in equation (17), have been received.

% ( ”;”jw (z)+[clsjrm(2)

dv,, (2) nz 1
dZ ( bj mn(z)+(c erzmn(z)

dw, (2) _ C31 mz ), )+ Cy, 7
dz m C, b
23)

[ jamm o
2D (cu C“C“][ z ]u (z)+[ ju (z)+[cu+c44—03032j(ma”§2]vmn(z)

mrz 11V/4
S ] Om (Z)+ C,+Cp, +C13 (C13 +Cy 7LCzs)}[)‘ﬂ-(z)
Cy a Cy a

)’Zmn(z) [C21+C szcslj( ]umn( )+[ %)an(Z)

+[CCCCJ[ = jvmn(n—[g:”f}rm(z (17)

C n
+[(c12 +C,, +c23)—c—23(cl3 +C,, +C33)}[l;[jaT(z)

d

Eqn. (17) represents the governing two-point BVP in ODEs in the domain 0<z <h with stress
components known at the top and bottom surfaces of an FG laminate.

In the absence of a boundary layer effect, the numerical integration of the BVP has been defined
in Eqns. (8), (17), and the related peripherical conditions can transform into a set of [VP's one

non-homogeneous and % homogeneous, equal to 2 and 4 for heat conduction and stress

analysis formulation, respectively. BVP transformation to IVP for thermal and stress analysis has
tabulated in Tables 1 and 2 successively. After this formation of a linear mixture of one non-

homogeneous and % homogeneous solution, fulfilling boundary conditions Z=h have been
solved. These give rise to % linear algebraic equations, which determine the unknown %

components at the starting edge Z=0. Then a final numerical integration of Eqns. (8) (16)
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represents the required outputs. The fourth-order Runge-Kutta technique has been applied here
for numerical integration.

Table 1
Transformation of BVP into IVP's for thermal analysis
. = =
Integration No. Bottom edge (z = 0) Top edge (z = )
T(2) 9,(2) T(2) q.(2)
0
1 Known (ASSUmed) Mll MZl
0 1
2 (Assumed) (Assumed) Miz Mz,
3 T(0)
(Final) (known) K1 T(@) (known) 9. (%)
Table 2. Transformation of BVP into [VP's for stress analysis
Integration Bottom edge (z=0) Topedge(z =h) Load
No. u v w I 3= o, u v w = Ty F term
0 0 0 0 0 0 B
1 (assumed) | (assumed) | (assumed) | (known) | (known) | (known) Yu Yo Yo Ya Ys1 Ya Include
1 0 0 o 0 0 ~ - - .
2 (assumed) | (assumed) | (2ssumed) | (assumed) | (assumed) | (2ssumed) i Yo RE Ya Yo Ya Delete
0 1 0 0 0 0 ) i ; .
3 (assumed) | (assumed) | (assumed) | (assumed) | (assumed) | (assumed) Yi Y hE Ya Ys Yo Delete
0 0 1 0 0 0 i i i N
4 (assumed) | (assumed) | (assumed) | (assumed) | (assumed) | (assumed) Vi | Y | Yu Vs Yse Ves Delete
. 0 0 0 0 0 0
Final X X; X (Enown) | (Known) | (Known) | #(h) | v(A) | w(#) | (known) | (known) | (knowm) Include

5. Numerical studies

Determination of exact thermal spreading through the depth of FG laminate and perform thermal
stress analysis with present formulation; a computer code has developed. For validating
generated computer code, stress analysis has been carried out for laminate subjected to

mechanical loading with intensity By =1.0 MPa at the laminate's top. Obtained outputs have

compared with Zenkour (2006) third-order shear deformation theory and Mantri's (2012) higher-
order shear deformation theory, which has tabulated in Table 3 and close agreement between
values has been observed. For the numerical study, reference temperature at the lower and upper

surface of the FG plate has been considered 20°C and 300°C respected. As listed in table 4,
three material sets have supposed to examine the effect of material gradation on temperature
distribution. Various power indices (k) have considered from ceramic to metal variation of
material gradation within thickness. Based on convergence studies, around 20 to 30 steps have
been used through the thickness of laminate for numerical integration. Distribution of actual
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temperature compared with assumed temperature as per power law variation through FG plate
depth with equal dimension for all material sets (aspect ratios 5 to 50) has plotted in figures 2,3

and 4. Moreover, to observe the effect of a different side to length ratio (%) , a comparison of
actual and assumed temperature variation had depicted in figure 5 only for material set B.

From graphs 2,3,4 and 5, it has been seen that the exact temperature profile for all aspect ratios
for a particular &k index follows the same pattern, there has no or little variation observed from
thin to thick plate consideration. For power index (k) is 0 and 1, the Model 2 assumed
temperature profile overestimates the Model 1 actual temperature profile. For power index (k) 2
and 4, both this variation partially coincides with each other, and further for power index (k) 8
and 10 assumed temperature profile by Model 2 underestimate Model 1 actual temperature
profile. This observation has valid for all material sets. It is worth to be noted that Model 2,
through thickness temperature variation, remains almost constant for power index, £=0, and for
power index, k=1, it turns to be perfectly linear.

Further, it has taken the higher-order curve's shape as the power index increases (k=1,4,8 and
10). However, Model 2, through thickness temperature distribution, was noted to be linear for
power index k=0 and further changes to higher-order curve for power index, =1, 2, and 4.
However, for the power index, k=8, and 10, this variation is nearly linear again. Again, these
observations have valid for all material properties and in-plane aspect ratios (b/a).

Determination of through thickness thermal stress variation for exact (Model 1) and with
assumed power law (Model 2) temperature profile, a computer code has developed. For
comparison of obtained results following normalization coefficient have used,

1000 100v 10w . _ 200, ._ 200,
u= 3 V= 3 W= 40 Ox = 210y = 20

% 1,S % 1,S 1S By, Tps By, Tps (18)
_ 202'xy = lOOTXZ e 1OOTyZ

Tyy = s Ty, = Ty, =
Y BaLs Y Bals " Eals

Obtained results have been tabulated in tables 5, 6, and 7 for square plate material sets A, B, and
C, respectively, simultaneously for rectangular plates in tables 8, 9, and 10. Table 5 noted that the

average percentage difference between Model 2 and Model 1 for in plane displacement (U) 1s

30% for transverse movement (W) 46%, for in normal plane stress (&, ) 66%, for in plane shear

stress (?Xy) is 30% and for transverse shear stress (7, )is 53%. Further from table 5 and table 6,

it has been observed that these percentage variations outcomes decrease for material group B and
increases for material group C.

By observing values in tables 8, 9 and 10, some observations have been documented. Average
percentage variation between Model 2 and Model 1 results in plane displacements (U,\T) , in the

plane, direct stress in the y-direction ( &y ), and for in plane shear stress has (7, ) not more. For
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in plane normal stress in the x-direction (0y)and transverse shear stress (7,,7,,) shows

variations in values; similarly, it has also been observed that transverse displacement (v_v)

remains silent. These have valid for all material sets considered for the study.

Through thickness variation of thermal stress analyses for Model 1 and Model 2 have depicted in
figure 6 to 10 for in plane displacement (TT), transverse displacement (W), in the plane, direct

stress (&y ), in the plane, and transverse shear stresses (rxy  Tyg ), respectively. Plate with material

set B with equal dimension has only been considered for demonstration of results in Figure.

From figure (6 to 10), It is worth noting that there is a significant difference in thermal stress
analyses performed for actual and assumed temperature variation along with the depth of the

plate. The notable differences in numerical results are less for moderately thick plates (s=10)

than reasonably thin and thin plates. Also, material dependency has been observed in numerical
results. In the present analysis, material set B is more sensitive than material sets A and C for all
displacement and stresses parameters. There is the impact of power index (k) on numerical
values. More overestimation underestimation has been noted for power index (k) represented
ceramic class of material almost for all displacement and stress variables. However, more or less,
the same pattern of variations has been observed in all figures for Model 1 and Model 2 analyses

except for transverse shear stress (7, ), which has been depicted in figure 10, showing exact

opposite stress patterns. The laminate's thickness has a governing parameter for stress analysis; a
thick laminate is more susceptible to temperature changes. Hence shows more error in Model 1
and Model 2 outputs than the moderately thick and thin laminates.

Table 3

Normalized in-plane and transverse displacements [LT, v‘v] , in-plane normal and shear stresses

[o‘-xx,fny and transverse shear stresses [?Xz]of square FG laminate under bi-directional transverse
sinusoidal loading for side to thickness ratio 10 for Mechanical Loading for material set B.
Quantity Theories k
0 1 2 4 8 10
e Model 1 0.2198 0.6436 0.9012 1.0541 1.0820 1.0840
u(_Zj Zenkour [2006]* 0.2309 0.6626 0.9281 1.0941 1.1340 1.1372
Mantari et al. [2012]" - 0.6398 0.8957 1.0457 1.0709 -
_ Model 1 0.2940 0.5870 0.757 0.8822 0.97Z 1.0070
w(0) Zenkour [2006]° 0.2960 0.5889 0.7573 0.8819 0.975 1.0089
Mantari et al. [2012]" - 0.5880 0.7564 0.8814 0.9737 -
f[hj Model 1 2.0043 3.097 3.6247 4.0838 4.7555 5.0660
3 Zenkour [2006]* 1.9955 1.4894 1.3954 1.1783 0.9466 5.0890
—( h Model 1 0.6826 0.6830 0.5115 0.5623 0.5840 0.6016
By [‘g) Zenkour [2006]° 0.7065 0.6110 0.5441 0.5667 0.5856 | 0.5894
Mantari et al. [2012]" - 0.6112 0.5438 0.5662 0.5850 -
—(h Model 1 0.2383 0.2382 0.2256 0.2175 0.2166 0.2166
P [g) Zenkour [2006]* 0.2462 0.2622 0.2763 0.2580 0.2121 0.2198
Mantari et al. [2012]" - 0.2566 0.2741 0.2623 0.2140 -

Note: Zenkour [2006]* =Generalized TSDT and Mantari et al. [2012]° = HSDT
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Table 4. Material Properties

Set Material Properties

Atbottom. z = 0 = Aluminivm: E=706Pa u=03 A=204K' a=23x10° W lKk!

4 Attop, z=h=7Zirconia : E=151GPa pu=0.3 A=209K' a=10x10"° W, 'k}

2 Atbottom. z = 0 = Aluminium: E =70GPa pu=03 A=204K"1 a=23x10° W 1K1
Attop, z=h=Alumina :E=380GPa u=03 A1=1040K""! a=74x10"* W 'k!

c Atbottom. z = 0 = Monel - E =227.24GPa pu=03 A=25K"! a=15x10° wig?!

Attop, z=h=Zirconia :E=151GPa u=03 A=209K™' a=10x10"°*W 'K!

Ref Kadoli et al. [12]

Table 5. Normalized in plane and transverse displacements (7,77 )and stresses (T, T, G- ] of square FG plate under bi-direction

sinusoidal transverse loading for side to thickness ratio 5.0 and 10.0 for material set A

s E Model T(a,0,0 & h) ﬁ[%%max] 5, ['%zﬂzo&hl] T, ['%z{}:{}&h.] %. (0.0, max )
0 Model I |5.491 0660 0.149 (5447 00555 |5.724 0319 0.411
Model2  |5.483 7407 20.060 5 461 10568 [ 5717 3580 1293
1 Model 1 [3.414 0476 0.002 [0.468 0715|3559 0230 1473
Model2  [6.391 2374 0.128 3317 0988 |-6.872 1148 4590
2 Model1  |3.721 0822 0.125 (5872 0405 |-3.879 0397 0.610
5 Model2  |6.349 20522 0.238 3786 0674 |-6619 20252 2135
3 Model 1 [4316 T1.069 0.100 7722 0183 | 4499 0517 1022
Model2  |5.428 0.354 0.179 5560 1460 |5.659 0.171 2047
8 Model 1 |3.088 ERES 0.172 (6226 0145|5305 0537 1533
Model2  |4.205 0.363 0.175 (7937 1460|4384 0176 3742
10 Model 1 [5.341 1083 0.183 [5.737 0169 |-5.568 0524 1.490
Model2  |3.824 0278 0.157 8673 1392 [387 0.134 3.610
0 Model 1 [1372 ~0.168 0.038 (1364 0136 [-1.430 0081 0.411
Model2  |1.303 1m 20,015 L1407 2714 1358 0856 0.507
1 Model 1 [0.863 0117 0.024 (2349 0180 |-0.900 0057 1473
Model2  |1.601 20544 0.024 L0519 0203 |-1670 20263 0.986
0 [ 2 Model 1 [0.952 0213 0.026 [2.176 0094 |-0.993 0.103 0.610
Model2  |1.549 0093 0.050 1021 0202 [-1615 0,043 0.424
2 Model 1 [1.122 0283 0.026 (1847 0031 |-1170 0137 1.022
Model2 | 1.326 0.117 0.046 [1.453 0391 |-1382 0.056 0.816
8 Model 1 [1.341 0296 0.036 (1423 0020 |-1398 0143 1533
Model2 | 1.026 0113 0.038 (2033 0387 [“1.060 0.054 0.997
10 Model 1 [1.412 0289 0.039 (1236 0026 [1472 0140 1.490
Model2  [0.932 0.000 0.034 12515 0366 [-0972 0.043 0.960
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Fig. 2. Comparison between through thickness exact temperature variation and power law variation for
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Fig. 3. Comparison between through thickness exact temperature variation and power law variation for
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6. Concluding remarks

This paper attempts to capture the actual temperature profile through the laminate thickness due
to the heat conduction formulation. Here temperature causing stress analysis has been performed
for both exact temperature profile and power law varying temperature profile with the semi-
analytical formulation. This semi-analytical formulation discussed here has based on a two-point
boundary value problem (BVP), which has depended on first-order differential equations
(ODE's). Comparison between exact and assumed temperature profiles had been documented for
various material sets, different aspect ratios, different power indices (k), and width to length
ratios changing from thick to thin, square to rectangular laminate. In the current study, the
material property's effect has been noted on the thermal profile, whereas the aspect ratio does not
impact it. From the thermal stress analysis, it has to be noted that the exact determination of
thermal profile is of utmost importance since material property, aspect ratios, power indexes (k),
etc., parameters have a specific impact on stress analysis. A significant difference in numerical
results between thermal stress analyses was observed for exact and assumed temperature
profiles. The semi-analytical approach presented here has the advantage of both analytical and
numerical methods, which help achieve simplicity and accuracy simultaneously, leading to
avoiding complex 3D solutions. The present formulation is capable of handling only all-around
simply supported laminate subjected to only distributed loading. In the future, the presented
formulation can be possible to extend for FG laminates with various boundary conditions,
multidimensional volume fraction change etc. Also, it is possible to handle other smart materials
like a composite, sandwich, piezoelectric materials, etc., after few mathematical manipulations
within the presented formulation.
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