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In this paper, efforts have devoted to developing heat 

conduction formulation to determine the exact temperature 

for power law varied functionally graded (FG) laminate. 

Further, the semi-analytical approach has re-invented for 

displacement and stress analysis of FG laminate. This way of 

analysis involves solving of two-point boundary value 

problem (BVP) ruled by first-order ordinary differential 

equations (ODE's). Here material properties such as modulus 

of elasticity, coefficient of thermal expansion, and heat 

conductivity have considered being varied as per power law, 

whereas Poisson’s ratio kept constant. The effect has 

undergone examination for applied transverse thermal 

loading and mechanical loading with the developed semi-

analytical formulation. The observation of the effect of 

variation of volume fraction as per power law on through 

thickness temperature distribution along with consideration 

of exact temperature and with assumed power law 

temperature has carried out. Further corresponding thermal 

stress analysis and its comparison with numerical parametric 

studies lead to productive output in this area of research. 

Keywords: 

FGM; 
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2D domain; 
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1. Introduction  

Industries like aerospace, automotive, electronics, telecommunication, and defence always 

demand lightweight and tuff materials, and to fulfill these demands, a new class of composite 
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material develops called functionally graded materials (FGM). These FGM's have generally 

made up of metals and ceramic, ranked smoothly in a particular direction(s). This unique 

material contains all the best properties of metals and ceramics like toughness, machinability, 

electrical conductivity, thermal resistance, corrosive resistance. Conventional composite 

materials drawbacks like debonding, interlaminar stresses, the formation of cracks, which 

usually occur due to the application of high static, thermal and mechanical loading, have 

eliminated. FGM also has applications in the area of biomedical, in the sports industry, in 

artificial body parts replacements. Generally, FGMs have in the form of beams, plates, and 

shells, and these have acted as thermal barriers between two extreme environmental 

conditions having substantial temperature differences. Some of the research related to the 

functionally graded (FG) laminates in which power-law varying material properties are 

subject to either mechanical, thermal, or both have discussed hereafter. 

Chakraborty et al. [1] developed a new finite beam model which uses first-order shear 

deformation theory (FSDT). Here both exponential and power law varied material properties 

has used to identify the difference between pure metal and pure ceramic behaviour on FG 

material under static, free vibration and wave propagation problems. Benatta et al. [2] 

developed the flexural theory with higher-order shear deformation theory (HSDT) to avoid 

warping for short and symmetric FG beam under three-point bending. Kadoli et al. [3] 

studied the effect of power law exponent with a different combination of metal-ceramic on 

deflection and stress with the help of HSDT. Ben-Oumrane et al. [4] carried out the static 

analysis for S-FGM thick beam subjected to uniformly distributed loads. They have analysed 

the FG beam by using classical plate theory (CPT), FSDT, HSDT, and next unified kinematic 

formulation suggested and also compared. The exact solution for the behaviour of power law 

varied, exponential law varied, and sigmoid law varied FG beam and its properties on natural 

frequency under through thickness variation of temperature has given by Mahi et al. [5]. 

Kiani and Eslami [6] studied the buckling behaviour of the FG beam with the help of the 

Euler Bernoulli beam theory (EBT) under a different type of thermal loading. 

Wattanasakulpong et al. [7] used third-order shear deformation theory (TSDT) to study the 

buckling and vibration of power law varied FG beam. Guinta et al. [8] analysed the FG beam 

with refined axiomatic theories and studied free vibration characteristics. Here bending, axial, 

and natural torsional frequencies for slender and thick FG beam have derived. Ma and Lee [9] 

presented the governing differential equation for static and dynamic response of the FG beam 

with non-linear FOST beam theory and physical neutral surface for uniform in-plane thermal 

loading. Thai and Vo [10] have presented various HSDTs, partially similar to EBT, and 

studied bending and free vibration response of the FG beam. Further, Thai and Vo [11] 

presented nonlocal sinusoidal shear deformation theory for bending, buckling, and vibration 

of nanobeams. Ma and Lee [12] have developed the exact solution for the FG beam subjected 

to axial load with different boundary conditions. Simsek and Reddy [13] presented unified 

beam theory for static and free vibration analysis of FG microbeams based on modified 

couple stress theory. Li et al. [14] developed an analytical method for establishing a 

relationship between the bending of FGM Timoshenko beams and homogenous Euler –

Bernoulli beams. Nazargah [15] has used a finite element approach for analysis of the FG 

beam subjected to bi-directional thermomechanical load. I-Ashmawy [16] has solved axially 

and transversally loaded thermo-mechanical FG beam with finite element (FE) models. This 

paper determines the dynamic response of axially and transversely loaded FG beam. Trinh et 

al. [17] carried out free vibration and buckling analyses of the FG beam subjected to thermo-
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mechanical load. Here uniform, linear, and non-linear thermal loading have been considered 

with the help of the state-space method. Pietro et al. [18] used a unified approach to analyse 

the FG beam subjected to thermo-mechanical loading. This FG beam's materials have graded 

linear, parabolic, cubic, and thermal loading has derived through a heat conduction solution. 

Hui et al. [19] used a unified formulation for free vibration analysis of a three-dimensional 

sandwich beam with finite element modeling. Rajasekaran and Khaniki [20] developed a 

formulation for analysing a non-prismatic thin-walled beam, which has graded in two 

directions. This analysis has carried out for buckling and vibration behaviour of the FG Euler 

beam with finite element modeling. 

Studying through past literature and understanding work done on FG materials so far, in this 

paper, efforts have made to evaluate the bending response of power law varying FG laminate 

for thermo-mechanical loading conditions. Here, it has attempted to extend the semi-

analytical formulation developed by Pendhari et al. [21] for heat conduction and stress 

analysis of FG laminate. The necessary elasticity and heat conduction equations have used 

here for the development of semi-analytical methods includes defining two-point BVP 

governed by a group of coupled first-order ordinary differential equations (ODE's) (Equation 

1) along with the thickness of a laminate on a basis from Kantorovich and Krylov [22] 

approach. 

 
     

dy z
D z y z p z

dz
   (1) 

Thermal loading has been determined as per the heat conduction equation and designed for 

accessing actual variation of temperature. Further, through the thickness, thermal change, as 

per simple power law, has also been discussed. Material properties here considered varied as 

per power law, and poisons ratio has held to be the same throughout the domain.   

2. Mathematical formulations 

Consider a single layer of thickness 'h,' an FG laminate of length 'a' in 'x' direction with 

infinite extent along 'y' direction. The support of FG laminate at two opposite edges (x=0, a) 

has shown. This laminate has subjected to mechanical and temperature load, which also 

varies only along with the length 'a.' Under such a situation, laminate is the plane-strain 

condition of elasticity in the x-z plane (Figure. 1). The coefficient of thermal expansion   , 

Elastic modulus  E , and coefficient of thermal conductivity    have varied only through 

the thickness of laminate accordingly to a power law as, 

 

 

( )
b t b k

b t b

b t b

E z E E E
z

z
h

z

   

  

        
         

                            

  (2)  

Where, bE
 and tE

 be Young's modulus of elasticity, b and t  be constant of thermal 

expansion, b and t are the coefficient of thermal conductivity at the bottom and top surface 

of the laminate, respectively. Further, it has considered that the FG material has uniform 
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properties at every point, and the ratio of lateral strain versus linear strain is assumed to be 

constant throughout the thickness.  

 

 

 

 

                                                                                                                                                        

 

 

 

 

 

3. 2D Heat conduction Formulation by Semi-Analytical 

The use of FG materials is primarily in situations where large temperature fields are 

experiencing on the structure, and hence, accurate determination of structural responses is of 

the utmost importance. This section is devoted to the discussion of the closed-form 

formulation for the 2D heat conduction equation. A thermal load and heat flux as defined in 

Eqn. (3) is assumed with only known temperature value at the top and bottom of the laminate 

surface    at  0   and    at  b tT T z T T z h    .    

1 1

( , ) ( )sin               and             ( , ) ( )sinz z

m m

m x m x
T x z T z q x z q z

a a

  

 

     (3) 

A governing two-dimensional (2D) steady-state heat conduction equation without internal 

heat generation is,   

   2 2

2 2

, ,
( ) ( ) 0

T x z T x z
z z

x z
 

 
 

 
  (4) 

As per Fourier's law of heat conduction, heat flux in direction x and z is given by,   

 
 

 
 , ,

, ( )                    , ( )x z

T x z T x z
q x z z q x z z

x z
 

 
   

 
  (5) 

where,  iq = heat flux along x and z-axis ( i  = x, z) in 2Wm  
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Fig. 1. FG laminate subjected to thermal and/or mechanical loading. 
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Power law varied FG Laminate 



24 Sh.P. Kulkarni, S.S. Pendhari/ Computational Engineering and Physical Modeling 3-4 (2020) 20-39 

And, with the consideration, the heat flow maintains the amount of total heat in element zero, 

the equilibrium equation in 2D, 

( , )( , )
0xz

q x zq x z

z x


 

 
  (6) 

Now, two variables viz. temperature field  T  and heat flux  zq  are assumed as a primary 

variable. With the help of algebraic simplification of the Eqns. (5) and (6) a set of PDEs 

consisting of only two primary variables zq  and T  are obtained. 

 
 

   2

2

, , ,1
,                 ( )

( )

z

z

T x z q x z T x z
q x z z

z z z x




  
   

  
 (7) 

Substituting Eqn. (3) and it's differential coefficients into Eqn. (7). The achievement of the 

following set of first-order ODE's as 

2 2

2

( ) ( )1
( )                  ( ) ( )

( )

m zm
zm m

dT z dq z m
q z z T z

dz z dz a







     (8) 

The governing two-point BVP in ODE's in the field 0 z h   with the known temperature at 

the upper and lower surface of FG laminate has given by Eqn. (8). 

4. 2D Stress Analysis Formulation by Semi-Analytical formulation 

As per the basic linear theory of elasticity, two-dimensional (2D) strain-displacement 

relationship, equilibrium equations, and constitutive relations in the thermo-elastic 

environment can be written as, 

( , ) ( , ) ( , ) ( , )
( , )        ( , )        ( , )x z xz

u x z w x z u x z w x z
x z x z x z

x z z x
  

   
   

   
  (9) 

( , ) ( , ) ( , ) ( , )
0                     0x xz zx z

x z

x z x z x z x z
B B

x z x z

      
     

   
 (10) 

and, 

11 12

12 22

33

( , ) 0 ( , ) ( )

( , ) 0 ( , ) ( )

( , ) 0 0 ( , )

i i i

x x

z z

xz xz

x z C C x z z T

x z C C x z z T

x z C x z

  

  

 

     
    

     
    
     

  (11) 

Here ( )z T  are the free thermal strains that arise due to temperature variation. To avoid 

complications in the analysis, the body forces, ,  x zB B  per unit volume in x and z directions, 

have neglected hereafter.  

The above Eqns. (9), (10) and (11) contains eight unknowns in eight equations which have as 

,  ,  ,  ,  ,  ,  ,  x z xz x z xzu w       . After a simple algebraic reduction/manipulation of the basic 

elasticity equations, a set of PDEs involving only four dependent variables ,  ,   and z xzu w    

has received as follows. 
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12 21
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)
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x

C C T x z
C z

C x

x zx z
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




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   

  


 

 

  

And Equation (13) shows the second dependent variable, ( , )x x z  in the form of primary 

variables as, 

11 12 11 12

( , ) ( , )
( , ) ( ) ( ) ( , )x

u x z w x z
x z C C C C z T x z

x z
 

 
   

 
 (13) 

With the help of boundary conditions at the support 0 and x a  and Fourier trigonometric 

series expansion, the PDE's given in equation (12) can convert into coupled first-order ODE 

as, 

1

( , ) ( )cosm

m

m x
u x z u z

a





 
  

 
 , 

1

( , ) ( )sinm

m

m x
w x z w z

a





 
  

 
   (14) 

and from the fundamental relations of the theory of elasticity, it can be shown that, 

1

( , ) ( )cosxz xzm

m

m x
x z z

l


 





           
1

( , ) ( )sinz zm

m

m x
x z z

l


 





   (15) 

Further, applied transverse loading on the top of the FG laminate and temperature variation 

along the x-direction is also express in sinusoidal form as, 

1 1

( , ) ( )sin       and      ( , ) ( )sinm

m m

m x m x
P x z P z T x z T z

l l

  

 

    (16) 

Putting Eqns. (14), (15) and (16) and its differential coefficients into Eqn. (12) Ordinary 

differential equations (ODEs), as mentioned in equation (17), have received. 
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
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 
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Eqn. (17) represents the governing two-point BVP in ODE's in the domain 0 z h   with 

stress components known at the top and bottom surfaces of an FG laminate. 

In the absence of a boundary layer effect, the numerical integration of the BVP has been 

defined in Eqns. (8), (17), and the associated boundary conditions can transform into a set of 

IVP's one non-homogeneous and 
2

n  homogeneous, equal to 2 and 4 for heat conduction 

and stress analysis formulation, respectively. This transformation of BVP to IVP for thermal 

and stress analysis have tabulated in Tables 1 and 2 successively.  After this formation of a 

linear combination of one non-homogeneous and 
2

n   homogeneous solution, fulfilling 

boundary conditions z h  have solved. These give rise to a system of 
2

n  linear algebraic 

equations, which determines the unknown 
2

n  components at the starting edge 0z  . Then 

a final numerical integration of Eqns. (8) (17) produces the required results. The fourth-order 

Runge-Kutta technique has been used here for numerical integration. 

Table 1 

Transformation of BVP into IVP's for thermal analysis 

Integration No. 
Bottom edge (𝑧 = 0) Top edge (𝑧 = ℎ) 

𝑇(𝑧) 𝑞𝑧(𝑧) 𝑇(𝑧) 𝑞𝑧(𝑧) 

1 Known 
0 
(Assumed) 

M11 M21 

2 
0 
(Assumed) 

1 
(Assumed) 

M12 M22 

3 
(Final) 

𝑇(0) 
(known) 

K1 𝑇(ℎ)    (known) 𝑞𝑧(ℎ) 

 

Table 2 

Transformation of BVP into IVP's for stress analysis 

 

5. Numerical studies  

A computer code has developed based on the current formulation, further, with the help of 

this determination of accurate temperature distribution and thermal stress analysis of the FG 

laminate noted. For numerical study, the upper and lower surface of the laminate has been 

assumed to subject 020 C  and 0300 C  temperature, respectively. Table 3 represents three 

material sets that have considered for study the effect of material properties on temperature 

distribution along with the thickness of a laminate. The top surface has a fully ceramic layer, 

and the bottom surface has a fully metallic layer, in between segments has graded with the 

In
te

g
ra

ti
o

n
  

N
o

. 

Bottom edge  0z   Top edge  z h  

Load 

/Temp. 

Term 

𝑢
 

𝑤
 

𝜏𝑥𝑧 
𝜎𝑧 

𝑢 𝑤 𝜏𝑥𝑧 𝜎𝑧  

1 
0 

(Assumed) 

0 

(Assumed) 

0 

(known) 

0 

(known) 
Y11 Y21 Y31 Y21 Include 

2 
1 

(Assumed) 

0 

(Assumed) 

0 

(Assumed) 

0 

(Assumed) 
Y12 Y22 Y32 Y42 Exclude 

3 
0 

(Assumed) 

1 

(Assumed) 

0 

(Assumed) 

0 

(Assumed) 
Y13 Y23 Y33 Y34 Exclude 

4   
(Final) 

X1 X2 
0 

(known) 

0 

(known) 
𝑢(ℎ) 𝑤(ℎ) 

0 

(known) 

0 

(known) 
Include 
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help of power indices (k). Numerical integration uses 20 to 30 steps through the thickness of 

the FG laminate.  

Comparison between actual temperature distribution and assumed power law varied 

temperature distribution through the thickness of FG laminate have made all material sets and 

depicted in Figures 2 to 4. Further, to determine the thickness effect on this study, various 

aspect ratios  s from 5 to 50 have investigated. From the graphs, it has been seen that the 

actual temperature profile for different aspect ratios (a/h) is almost the same, proves the 

independency of aspect ratios (a/h) on temperature distribution along with the FG laminate 

thickness for all material sets. However, noticeable differences have been observed for all 

material sets when through thickness temperature distribution obtained by heat conduction 

solution compared with simple assumed power-law varied temperature profile along with the 

FG laminate thickness. Further, the difference between actual and assumed temperature 

variations goes on reducing for material set A to C has observed, which showed the material 

dependency on temperature distribution. Next, it has also noted that the power index, (k) 

equal to 0, which represents ceramic, heat conduction solution gives linearly varied 

temperature distribution.  Whereas, variation as per assumed power law gradation initially 

shows sudden jumps in results just up from the bottom surface of laminate along thickness 

direction and has remained constant further. As the value of power indexes (k) increases, 

temperature variation obtained through heat conduction solution showed convex nature up to 

power index (k) equal to 2.0, whereas temperature variation followed by the assumed power 

law equation shows the concave view up to power index (k) equal to 0.8. Further, for power 

law (k) index similar to or more than 10 representing metallic nature, a linear variation of 

temperature produced from heat conduction solution whereas the thickness variation of 

temperature as per assumed power law equation showed convexly.   

Table 3 

Material Properties 

Set Material Properties 

a 

At bottom, 𝑧 = 0 ⇒ Aluminium:  𝐸 = 70 𝐺𝑃𝑎              𝜇 = 0.3         𝜆=204 𝐾−1           𝛼 = 23 × 10-6 𝑊𝑚
−1𝐾−1 

At top,        𝑧 = ℎ ⇒ Zirconia      :   𝐸 = 151 𝐺𝑃𝑎           𝜇 = 0.3          𝜆=2.09 𝐾−1          𝛼 = 10 × 10−6 𝑊𝑚
−1𝐾−1 

b 

At bottom, 𝑧 = 0 ⇒ Aluminium:  𝐸 = 70 𝐺𝑃𝑎             𝜇 = 0.3          𝜆=204𝐾−1            𝛼 = 23 × 10-6 𝑊𝑚
−1𝐾−1 

At top,         𝑧 = ℎ ⇒ Alumina     :   𝐸 = 380 𝐺𝑃𝑎          𝜇 = 0.3          𝜆 = 10.40𝐾−1      𝛼 = 7.4 × 10−6 𝑊𝑚
−1𝐾−1 

c 

At bottom, 𝑧 = 0 ⇒ Monel         :   𝐸 = 227.24 𝐺𝑃𝑎     𝜇 = 0.3          𝜆=25 𝐾−1             𝛼 = 15 × 10-6 𝑊𝑚
−1𝐾−1 

At top,         𝑧 = ℎ ⇒ Zirconia     :   𝐸 = 151 𝐺𝑃𝑎           𝜇 = 0.3          𝜆=2.09 𝐾−1         𝛼 = 10 × 10−6 𝑊𝑚
−1𝐾−1 

Ref. Kadoli et al. [3] 
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Fig. 2. Comparison between through thickness exact temperature variation and power law variation 

for various power index (k) of FG laminate Material set A]. 
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Fig. 3. Comparison between through thickness exact temperature variation and power law variation 

for various power index (k) of FG laminate [Material set B]. 
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Fig. 4. Comparison between through thickness exact temperature variation and power law variation 

for various power index (k) of FG laminate [Material set C]. 
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Thermal stress analyses for accurate through thickness temperature profile have obtained 

from heat conduction solution (Model 1) and assumed power law temperature profile (Model 

2).  All material sets and various aspect ratios (a/h) has analysed. Comparison and uniform 

presentation of numerical results has carried with the following normalization coefficients. 

2

3 4

100 10
  ;        ;     ;      x xz

x xz
b b b b b bb b b b

su w
u w

E T E TT s T s

 
 

  
     (18) 

After analysis, the results which received have tabulated in Table 4 and through thickness 

comparison between Model 1 and Model 2 for in-plane and transverse displacements  ,n nu w

and in-plane normal and transverse shear stresses  ,x xz  have depicted in Figure 5 to 

Figure 8 for material set C only. Figures 5 and 6 indicate through thickness variation of in-

plane displacement followed a simple linear profile. In contrast, transverse displacement 

showed little curvature. The difference between Model 1 and Model 2, displacement values 

are very minimum for aspect ratio (s) 10, simulating moderately thick laminate. Further, the 

exact opposite pattern of variations had observed for in-plane normal stresses (Figure 7). The 

effect of aspect ratios (s) has absent for through thickness variation of in-plane normal stress 

 x  obtained from Model 1 for all power law indices. Through thickness variations derived 

from Model 2 showed the dependency of aspect ratios only for ceramic reclining laminate 

(power index less than 1.0). Moreover, transverse shear stress  xz  followed sinusoidal 

variations for both Model 1 and Model 2; however, in the opposite direction (Figure 8).   

 Further, the transverse mechanical load 2
0 1P N mm  has applied on the top surface of FG 

laminate along with thermal effect, and stress analysis has performed for all material sets and 

transverse aspect ratio (s) 5, 10, 20, and 50. The following normalized coefficients have been 

used here for the comparison of the results. 

3 4 2

00

                                
140350
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      (19) 

In which bar over the variables defines its normalized value. 

Response for in-plane displacement  u , transverse displacement  w , in-plane normal stress,  

 x  and transverse shear stress  xz obtained from  Exact and Assumed have documented in 

Tables 5. However, when the laminate is subject to thermal loading and mechanical loading, 

no significant differences have been seen for all parameters in the responses obtained from 

Exact and Assumed. These may be due to the neutralizing the overall effect of thermal 

loading by mechanical loading. However, investigation of the intensity of mechanical loading 

effects has neglected in the present studies. 
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Table 4. 

Normalized in-plane and transverse displacements  ,u w and stresses  ,x xz  of FG laminate under 

thermal loading for material set A, B, and C. 

s k Source   0, & 0nu h   ,max
2n

aw  
 0,maxxz

 
 , & 0

2x
a h  

Material set A 

5 

0 
Model 1 -8.304           -0.554 0.282 0.000 0.001            0.000 

Model 2 -8.573           -8.573 0.052 0.752 0.502            0.502 

0.5 
Model 1 -5.187           -0.241 0.179 2.330 -5.804         -0.891 

Model 2 -9.537           -6.254 0.156 3.750 2.297            4.299 

0.8 
Model 1 -5.216           -0.553 0.171 1.741 -5.748         -0.622 

Model 2 -9.862           -4.445 0.221 4.167 2.901            2.737 

1.0 
Model 1 -5.289           -0.725 0.168 1.437 -5.613         -0.473 

Model 2 -9.951           -3.451 0.254 4.003 3.067            1.879 

2.0 
Model 1 -5.811           -1.295 0.170 0.580 -4.641           0.019 

Model 2 -9.611           -0.649 0.326 1.774 2.434          -0.538 

10 
Model 1 -8.519           -1.739 0.255 1.669 0.400            0.402 

Model 2 -5.785            0.511 0.221 3.617 -4.689         -1.540 

Material set B 

5 

0 
Model 1 -6.119          -0.408 0.208 0.000 0.003            0.000 

Model 2 -6.317          -6.317 0.038 1.420 0.947            0.947 

0.5 
Model 1 -5.174          -0.609 0.168 2.405 -4.502         -0.583 

Model 2 -7.143          -6.492 0.062 7.518 4.886            4.585 

0.8 
Model 1 -5.320          -1.018 0.161 1.215 -3.809         -0.224 

Model 2 -7.583          -5.168 0.117 9.153 6.986            3.422 

1.0 
Model 1 -5.454          -1.268 0.158 0.729 -3.167         -0.005 

Model 2 -7.771          -4.327 0.149 9.251 7.884            2.683 

2.0 
Model 1 -6.253          -2.202 0.158 2.653 0.641            0.816 

Model 2 -7.981          -1.451 0.243 6.592 8.883            0.156 

10 
Model 1 -10.46          -3.067 0.288 8.596 20.709          1.576 

Model 2 -5.855           0.599 0.225 3.930 -1.255          -1.645 

Material set C 

5 

0 
Model 1 -4.824           0.746 0.196 1.802 -3.780          -0.762 

Model 2 -13.146       -13.146 0.080 0.296 0.198            0.198 

0.5 
Model 1 -10.173        -0.191 0.360 1.272 -1.223          -0.934 

Model 2 -14.530        -5.794 0.349 1.720 0.859             3.902 

0.8 
Model 1 -9.985          -0.432 0.346 1.177 -1.313          -0.726 

Model 2 -14.417        -3.441 0.415 1.499 0.805            1.871 

1.0 
Model 1 -9.984          -0.568 0.342 1.076 -1.314          -0.609 

Model 2 -14.174        -2.346 0.439 1.170 0.689             0.926 

2.0 
Model 1 -10.492        -1.037 0.346 0.506 -1.071          -0.204 

Model 2 -12.326         0.195 0.449 1.471 -0.194          -1.268 

10 
Model 1 -14.376        -1.610 0.468 1.091 0.786             0.290 

Model 2 -5.444           0.311 0.207 3.152 -3.483          -1.368 
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Table 5 

Normalized in-plane and transverse displacements  ,u w and stresses  ,x xz  of FG laminate under 

thermomechanical loading for material set A, B, and C 

s k Source   0, & 0nu h   ,max
2n

aw   0,maxxz   , & 0
2x

a h  

Material set A 

5 

0 
Model 1 -2.583        2.561 1.799 0.031 3.830        -3.822 

Model 2 -2.586        2.481 1.775 0.031 3.834        -3.818 

0.5 
Model 1 -2.989        3.558 2.281 0.031 4.434        -2.466 

Model 2 -3.032        3.498 2.277 0.031 4.499        -2.424 

0.8 
Model 1 -3.144        3.920 2.464 0.031 4.665        -2.715 

Model 2 -3.190        3.881 2.467 0.031 4.734        -2.688 

1.0 
Model 1 -3.221        4.095 2.555 0.031 4.780        -2.836 

Model 2 -3.268        4.067 2.561 0.031 4.850        -2.817 

2.0 
Model 1 -3.457        4.533 2.809 0.031 5.132        -3.139 

Model 2 -3.495        4.539 2.823 0.031 5.189        -3.143 

10 
Model 1 -4.221        4.959 3.256 0.030 6.270        -3.432 

Model 2 -4.194        4.981 3.254 0.030 6.230        -3.448 

Material set B 

5 

0 
Model 1 -1.029        0.993 0.710 0.031 3.814        -3.806 

Model 2 -1.031        0.934 0.692 0.031 3.821        -3.798 

0.5 
Model 1 -1.336        1.757 1.076 0.032 4.985        -1.244 

Model 2 -1.356        1.698 1.064 0.032 5.060        -1.202 

0.8 
Model 1 -1.489        2.175 1.273 0.033 5.568        -1.538 

Model 2 -1.512        2.133 1.268 0.033 5.654        -1.508 

1.0 
Model 1 -1.575        2.424 1.391 0.033 5.897        -1.712 

Model 2 -1.599        2.393 1.389 0.033 5.986        -1.691 

2.0 
Model 1 -1.855        3.262 1.800 0.032 6.963        -2.302 

Model 2 -1.872        3.270 1.808 0.032 7.029        -2.307 

10 
Model 1 -2.621        4.154 2.468 0.029 9.886        -2.929 

Model 2 -2.563        4.167 2.453 0.029 9.665        -2.938 

Material set C 

5 

0 
Model 1 -4.728        4.714 3.303 0.031 9.046        -9.027 

Model 2 -4.732        4.591 3.267 0.031 9.054        -9.019 

0.5 
Model 1 -3.997        3.400 2.592 0.031 7.650        -11.783 

Model 2 -3.991        3.353 2.589 0.031 7.733        -11.590 

0.8 
Model 1 -3.839        3.204 2.463 0.031 7.348        -11.105 

Model 2 -3.884        3.174 2.467 0.031 7.433        -11.001 

1.0 
Model 1 -3.764        3.128 2.407 0.031 7.204        -10.844 

Model 2 -3.806        3.111 2.414 0.031 7.284        -10.783 

2.0 
Model 1 -3.532        2.964 2.259 0.031 6.760        -10.275 

Model 2 -3.550        2.976 2.268 0.031 6.795        -10.318 

10 
Model 1 -3.042        2.752 2.013 0.031 5.822        -9.546 

Model 2 -2.952        2.772 1.990 0.031 5.652        -9.613 
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Fig. 5. Thickness variation of normalized in-plane displacement ( nu ) for various graded FG laminate 

[Material set C]. 
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Fig. 6. Thickness variation of normalized transverse displacement ( nw ) for various graded FG 

laminate [Material set C]. 
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Fig. 7. Thickness variation of normalized in-plane stresses ( x ) for various graded FG laminate 

[Material set C]. 



 Sh.P. Kulkarni, S.S. Pendhari/ Computational Engineering and Physical Modeling 3-4 (2020) 20-39 37 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

-10 -8 -6 -4 -2 0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5

0.0

0.2

0.4

0.6

0.8

1.0

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5

0.0

0.2

0.4

0.6

0.8

1.0

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5

0.0

0.2

0.4

0.6

0.8

1.0

-10 -8 -6 -4 -2 0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

-6 -4 -2 0 2 4

z k=0

(a) (b)

(c) (d)

(e) (f)

(0, )xz z

  Model 1 s=5

  Model 2 s=5

  Model 1 s=10

  Model 2 s=10

z

(0, )xz z
(0, )xz z

k=0.5

  Model 1 s=5

  Model 2 s=5

  Model 1 s=10

  Model 2 s=10

z

(0, )xz z

k=0.8

 

  Model 1 s=5

  Model 2 s=5

  Model 1 s=10

  Model 2 s=10

z

(0, )xz z

k=1.0
 

  Model 1 s=5

  Model 2 s=5

  Model 1 s=10

  Model 2 s=10

z

(0, )xz z

 

k=2.0

 Present Model 1 (a/h = 5)

 Present Model 2 (a/h = 5)

 Present Model 1 (a/h = 5)

 Present Model 2 (a/h = 5)

  Model 1 s=5

  Model 2 s=5

  Model 1 s=10

  Model 2 s=10

z

(0, )xz z

k=10

  Model 1 s=5

  Model 2 s=5

  Model 1 s=10

  Model 2 s=10

 

Fig. 8. Thickness variation of normalized transverse stresses ( xz ) for various graded FG laminate 

[Material set C]. 
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6. Concluding remarks 

Semi-analytical formulations based on a two-point boundary value problem governed by a set 

of coupled first-order ordinary differential equations (ODEs) and free from simplified 

assumptions along the thickness of laminates for heat conduction equation and stress analysis 

have discussed in this paper. The present formulation involves using analytical and numerical 

approaches, which achieves both accuracy and simplicity. It also helps to reduce the 

dimension of the elasticity problem and helps to avoid a complex 3D stress analysis. 

Comparison between power law varied temperature fields along the depth of a laminate and 

temperature field obtained through heat conduction solutions have documented for different 

material combinations as well for various aspect ratios. The existence of material sensitivity 

has been noticed for temperature profile and the thickness of a laminate, Whereas no 

observation noted the effect of aspect ratio. Further, stress analyses performed and document 

for both thermal and thermomechanical loading. Considerable differences have been seen 

during stress analysis for the thermal load on various parameters from displacement and 

stress groups. In contrast, no significant difference had recorded for stress analysis with 

thermomechanical loading.  
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