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Vibrational study of fluid-structure interaction is one of the 

most widely used cases in engineering. In various industries, the 

effect of fluid on the structure and vice versa is necessary to 

investigate such as shipbuilding, ocean energy sources, offshore 

structures, etc. In this paper, the dynamic behavior of a long 

rectangular plate located on a viscoelastic bed at the bottom of a 

narrow channel has been studied in detail. According to earlier 

studies, the muddy seabed of coasts attenuate the waves. Here 

we investigate the interaction between the gravity sea waves 

and the muddy seabed by modeling the seabed as a rectangular 

plate that located on a viscoelastic foundation which contains 

springs and dampers. The springs and dampers are attached at 

the bottom of plate to model the behavior of the muddy seabed. 

The governing equations of motion have been obtained and a 

new semi-analytical solution has been presented to solve them. 

The proposed model is validated against available literatures. 

Then, the influence of different parameters such as boundary 

conditions, plate's rigidity and mass, damping ratio, restoring 

force and different transverse modes on the vibrational behavior 

of the system has been investigated in detail. The effects of 

various parameters on the frequency response of the system 

have been studied in detail. 
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1. Introduction 

According to the research that done by Creel in 2003, about 3 billion people live within a 200 km 

distance from coastlines, which is forecasted to double in 2025 [1]. This high concentration of 

population has made significant improvement in industry, urban life and tourism on the 

coastlines. Therefore, the safety of coastal areas against storm waves and tsunamis are important. 

In a study done by Gade [2] in 1958, a phenomenon observed that the sea waves amazingly 

damped at the coasts with muddy seabed. As shown in Fig. 1, the waves attenuated by 

overpassing the muddy seabed and accordingly, wave’s height decreases gradually [3], Another 

example of this natural phenomenon could be found on the coast of South India [4]. It should be 

noted that the attenuation of energy by the muddy seabed has made the southern coast of India, 

with 2 to 5 meters depth, a safe place for local fishermen against powerful waves. 

 
Fig. 1. Aerial photo of a muddy coast in Brazil [3]. 

Also, further studies done around the world by silvester [5], Machpherson and Kurup [6] and 

Sheremet and Stone [7] which verify the Gade’s claim. Shermet and Stone [7] reported that the 

height of the waves decreased up to 70% through the muddy seabed compared to the sandy 

seabed. 

After that, scholars presented different models to study the behavior of muddy seabed. 

Macpherson [8] analyzed the interaction of a two-layered fluid system that the above layer of 

fluid is inviscid and the bottom layer is a viscoelastic fluid. It has been claimed that the muddy 

seabed has elastic and viscous behavior which elastic one causes restoring force and viscous one 

acts like internal fraction. In addition, Dalrymple and Liu [9] analyzed the two-layer fluid system 

with assumption of Newtonian viscous fluid for the bottom layer. It has been found an acceptable 

damping rates of muddy seabed in comparison to the studies done by Gade [2] and Macpherson 

[8]. Alam et al. [10] also used two-layered fluid system to investigate two dimensional (2D) and 

three dimensional (3D) model of wave propagation that has been generated by ships and 

submarines. By comparing the results of nonlinear model and direct simulation, they proved that 

the calculations have an acceptable accuracy. Another model of muddy seabed has been studied 

by Liu and Mei [11] in 1993. They modeled the muddy seabed as a Bingham plastic. 

The vibration analysis of a thin plate in contact with the fluid has been widely noticed in the 

literatures. In 2012, Alam [12,13] presented the idea of using a flexible thin plate on the seabed 

as the carpet wave energy converter (CWEC). He proved that the energy of the surface waves 

could be absorbed by using an artificial flexible plate on the viscoelastic bed. The viscoelastic 
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bed contained springs and generators (dampers), which is responsible for elastic and viscous 

behavior of muddy seabed, respectively. The most important advantage of energy absorbent 

carpet is its high ability to absorb the sea waves in comparison to other converters, which 

increases the efficiency of this type of converters. It also provides a safe area for coastline 

residents and anglers against stormy waves. In 2018, Asaiean et al. [14] assumed the muddy 

seabed as a flexible plate located at the bottom of the channel and studied the effects of mass and 

flexural rigidity of the plate which have been neglected in previous studies. It is worth 

mentioning that only sliding-sliding boundary conditions of the plate can be conducted using the 

solution methodology presented in [14].  

The fluid-structure interaction problems are one of the most important problems in offshore 

engineering. In recent studies, the interaction of horizontal and vertical plates with gravitational 

waves has been studied at different depths. In 2001, Sahoo et al. [15] analyzed scattering of 

surface waves caused by a floating semi-infinite elastic plate with finite depth using Fourier 

analysis. Mondal and Sahoo [16] studied interaction of gravitational waves with ice sheet 

covered water surface in three dimensions. The aim of similar studies is to investigate the fluid-

structure interaction of wave makers [17], crack in floating ice sheets [18] and wave energy 

absorbers[12]. 

In this paper, a 3D model of submerged horizontal plate has been analyzed. The plate is located 

at the bottom of a channel with different boundary conditions through the channel’s width. The 

governing equations of motion for the system have been obtained and a new solution method has 

been introduced in this paper to obtain the response. In addition, the effect of boundary 

conditions, higher modes, mass and flexural rigidity of plate, restoring force and damping ratio 

of viscoelastic on frequency of system have been investigated. 

2. Research significance 

In the previous studies, except author’s previous publication [14], the submerged horizontal 

structure has been assumed to be one-dimensional (1D), namely beam located at the bottom of 

the sea. In addition, the flexural rigidity and the mass of the structure have been neglected. It is 

clear that the elasticity and mass of the structure should be considered to obtain the more 

accurate results from the model. 

In this paper, the simplification of interaction between gravity waves and submerged horizontal 

structure is reduced so that the results are more reliable. Therefore, by presenting a more accurate 

model, it is possible to study other influential factors such as boundary conditions and the 

material of structure. Another advantage of this study is the presentation of a new solution 

method to investigate the dynamic response of structure. 

3. Methods 

As shown in Fig. 2, the submerged horizontal plate has infinite length, finite width b and 

constant thickness d, and it is placed at the depth h on the channel bed. The linear free surface 

incident waves move along the positive direction of the x-axis with the wavenumber 𝑘 = 2𝜋/𝜆 
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(where 𝜆 is the wavelength) while the thin flexible plate is connected to the viscoelastic 

foundation at the channel bed. This viscoelastic foundation is composed of normal springs and 

generators (modeled as dash-pot dampers) which act linearly in the z-direction. 

 
Fig. 2. Schematic view of the system considered in this study. 

3.1. Governing equations for the problem of wave-structure interaction 

For the fluid domain−∞ < 𝑥 < ∞, 0 < 𝑦 < 𝑏 and 0 < 𝑧 < ℎ, by assuming the irrotational 

motion of the homogeneous, incompressible and inviscid fluid, the potential flow theory can be 

applied to model the fluid behavior. Accordingly, the oscillatory liquid flow in the fluid region is 

described by using the velocity potential, where due to the conservation of energy the velocity 

potential must satisfy the Laplace equation as: 

∇2𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝜙,𝑥𝑥 + 𝜙,𝑦𝑦 + 𝜙,𝑧𝑧 = 0 (1a) 

Herein 𝜙(𝑥, 𝑦, 𝑧, 𝑡) is the velocity potential of the fluid and 𝑡 is time. The velocity potential is 

related to three fluid velocity components (i.e. 𝑢, 𝑣, 𝑤) in the reference Cartesian coordinate 

system (i.e. 𝑥𝑦𝑧) as: 

u = ϕ,x, v = ϕ,y, w = ϕ,z (1b) 

Due to the presence of rigid walls at two ends of the channel width, the fluid velocity in the 

direction normal to the walls is zero: 

At 𝑦 = 0: 𝜙,𝑦 = 0       (2) 

At 𝑦 = 𝑏: 𝜙,𝑦 = 0   (3) 

The linearized boundary conditions at the fluid free surface and the seabed can be expressed as 

[14]: 

At  𝑧 = 0: 
𝜙,𝑡  + 𝑔𝜂𝑠 = 0 (4a) 

𝜙,𝑧 = 𝜂𝑠,𝑡 (4b) 

At 𝑧 = −ℎ: 
𝜙,𝑡  +

𝑃𝑝

𝜌
+ 𝑔𝜂𝑝 = 0 (5a) 

𝜙,𝑧 = 𝜂𝑝,𝑡 (5b) 
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where g is the gravitational acceleration, 𝜌 is the fluid density, 𝑃𝑝is the fluid pressure applied on 

the plate surface, 𝜂𝑝(𝑥, 𝑦, 𝑡) and 𝜂𝑠(𝑥, 𝑦, 𝑡) are the plate’s mid-plane displacement and the fluid 

free surface (i.e. 𝑧 = 0) displacement in 𝑧 direction, respectively. Eqs. (4a) and (4b) can be 

combined and expressed as a single boundary condition as: 

At  𝑧 = 0: 𝜙,𝑡𝑡 + 𝑔𝜙,𝑧 = 0 (5c) 

The plate deformation in Eqs. (5a) and (5b) is the solution of following differential equation for a 

Kirchhoff plate: 

𝐴𝑡 𝑧 = −ℎ: 𝐷∇𝑥𝑦
4 𝜂𝑝 + 𝜌𝑝𝑑 𝜂𝑝,𝑡𝑡 + 𝑘

∗𝜂𝑝 + 𝑐
∗𝜂𝑝,𝑡 − 𝜌(𝜙,𝑡 + 𝑔𝜂𝑝) = 0 (6) 

Where 𝐷 = 𝐸𝑑3/(12(1 − 𝜈2)) is the flexural rigidity of the plate (𝐸 is the Young’s modulus of 

plate and 𝜈 is its poison’s ratio), 𝜌𝑝 is the plate density, and 𝑐∗ and 𝑘∗ are the damping and 

stiffness coefficients of the viscoelastic foundation, respectively. It is important to note that the 

unsteady hydrodynamic pressure on the plate is obtained from Eq. (5a) as 𝑃𝑝 = 𝜌(𝜙,𝑡 + 𝑔𝜂𝑝) 

and substituted in Eq. (6). The boundary conditions at 𝑦 = 0 and 𝑦 = 𝑏 are also specified 

depending on type of the support considered for the plate. For instance, the simply supported 

boundary conditions impose 𝜂𝑝(𝑥, 𝑦 = 0, 𝑡) = 0, 𝜂𝑝(𝑥, 𝑦 = 𝑏, 𝑡) = 0, 𝜂𝑝,𝑦𝑦(𝑥, 𝑦 = 0, 𝑡) = 0 and 

𝜂𝑝,𝑦𝑦(𝑥, 𝑦 = 𝑏, 𝑡) = 0.  

In order to solve the boundary value problem for 𝜙(𝑥, 𝑦, 𝑧, 𝑡), which is specified in Eq. (1a) with 

the boundary conditions denoted in Eqs. (2), (3), (5b) and (5c), the normal mode method is 

utilized and a harmonic response (i.e. a function of time through a factor 𝑒−𝑖𝜔𝑡 where 𝜔 is the 

incident wave frequency and 𝑖 = √−1) for the governing equation is sought. Correspondingly, 

we assume that the fluid disturbances due to the interaction between waves and deformable plate 

are small enough to utilize the superposition principle and express the velocity potential function 

as the summation of two sub-components; i.e. diffraction potential (𝜙𝑠) and radiation 

potential(𝜙𝑏), as:  

𝜙 = 𝜙𝑠 + 𝜙𝑏 (7) 

The diffraction potential describes the velocity potential due to the incident wave plus the fluid 

scattered field by the plate at rest, while the radiation potential is generated due to the flexible 

plate oscillations. Therefore, each of the components in Eq. (7) must satisfy the Laplace 

differential equation in the whole fluid region: 

∇2𝜙𝑏 = 0 (8a) 

∇2𝜙𝑠 = 0 (8b) 

The boundary conditions (2), (3), (5b) and (5c) can also rearranged for each mode as: 

(9a) 𝜙𝑏,𝑦 = 0 At 𝑦 = 0 

(9b) 𝜙𝑏,𝑦 = 0 At 𝑦 = 𝑏 

(9c) 𝜙𝑏 = 0 At 𝑧 = 0 
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(9d) 𝜙𝑏,𝑧 = 𝜂𝑝,𝑡 At 𝑧 = −ℎ 

and: 

(10a) 𝜙𝑠,𝑦 = 0 At 𝑦 = 0 

(10b) 𝜙𝑠,𝑦 = 0 At 𝑦 = 𝑏 

(10c) −𝜔2𝜙𝑠 + 𝑔(𝜙𝑠,𝑧 + 𝜙𝑏,𝑧) = 0 At 𝑧 = 0 

(10d) 𝜙𝑠,𝑧 = 0 At 𝑧 = −ℎ 

Thus, the general form of velocity potentials for the radiation and diffraction modes can be 

assumed as: 

𝜙𝑏(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒
𝑖(𝑘𝑥−𝜔𝑡) ∑ 𝑎𝑏𝑚 cos (

𝑚𝜋

𝑏
𝑦) (𝑒𝐴𝑚(𝑧−ℎ) + 𝑞𝑏𝑚𝑒

−𝐴𝑚(𝑧+ℎ))

𝑀

𝑚=0

 (11) 

𝜙𝑠(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒𝑖(𝑘𝑥−𝜔𝑡) ∑ 𝑎𝑠𝑚 cos (
𝑚𝜋

𝑏
𝑦) (𝑒𝐴𝑚𝑧 + 𝑞𝑠𝑚𝑒

−𝐴𝑚𝑧)

𝑀

𝑚=0

 (12) 

where m is the normal mode number, 𝑎𝑏𝑚 and 𝑎𝑠𝑚 are the amplitudes of the corresponding 

modes. Upon substituting Eq. (11) into Eq. (8a) (or Eq. (12) into Eq. (8b)), 𝐴𝑚can be obtained 

as: 

𝐴𝑚 = √𝑘2 +
𝑚2𝜋2

𝑏2
 (13) 

Moreover, from Eqs. (9c) and (10d), we can obtain: 

𝑞𝑏𝑚 = −1 (14) 

𝑞𝑠𝑚 = 𝑒−2𝐴𝑚ℎ  (15) 

Therefore, the radiation and diffraction modes of the velocity potential are expressed as: 

𝜙𝑏(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒
𝑖(𝑘𝑥−𝜔𝑡) ∑ 𝑎𝑏𝑚 cos (

𝑚𝜋

𝑏
𝑦) (𝑒𝐴𝑚(𝑧−ℎ) − 𝑒−𝐴𝑚(𝑧+ℎ))

𝑀

𝑚=0

 (16) 

𝜙𝑠 = 𝑒
𝑖(𝑘𝑥−𝜔𝑡) ∑ 𝑎𝑠𝑚 cos (

𝑚𝜋

𝑏
𝑦) (𝑒𝐴𝑚𝑧 + 𝑒−𝐴𝑚(2ℎ+𝑧))

𝑀

𝑚=0

 (17) 

The modal expansion technique can be utilized in a similar manner to express the general 

harmonic form of the vertical displacement for the fluid free surface (i.e. 𝑧 = 0) as the following: 

𝜂𝑠(𝑥, 𝑦, 𝑡) = 𝑒
𝑖(𝑘𝑥−𝜔𝑡) ∑ 𝐿𝑚 cos (

𝑚𝜋

𝑏
𝑦)

𝑀

𝑚=0

 (18) 

where 𝐿𝑚 is the amplitude corresponding to the 𝑚th mode in the harmonic response. In order to 

obtain the ratio between the amplitudes of velocity potential response in the fluid domain 
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(𝑎𝑏𝑚 and 𝑎𝑠𝑚) and free surface displacement (𝐿𝑚), by recalling Eqs. (4b) and (7), 𝜂𝑠,𝑡 = 𝜙,𝑧 =

𝜙𝑠,𝑧 + 𝜙𝑏,𝑧 can be used in Eq. (10c) to obtain: 

(19) 𝜂𝑠,𝑡 =
𝜔2

𝑔
𝜙𝑠 At 𝑧 = 0 

Inserting Eqs. (17) and (18) into Eq. (19) yields: 

(20) 𝑎𝑠𝑚 =
−𝑖𝑔𝐿𝑚

𝜔(1 + 𝑒−2𝐴𝑚ℎ)
 

Subsequently, substituting 𝑎𝑠𝑚 from Eq. (20) into Eq. (17) and using the outcome and Eq. (16) in 

Eq. (10c) leads to: 

(21) 𝑎𝑏𝑚 =
−𝑖𝑔𝑒𝐴𝑚ℎ𝐿𝑚

2𝜔
(
𝜔2

𝐴𝑚𝑔
− tanh(𝐴𝑚ℎ)) 

The superposition principle can be similarly utilized to derive the general semi-analytical 

solution of Eq. (6) as: 

(22) 𝜂𝑝(𝑥, 𝑦, 𝑡) = 𝑒
𝑖(𝑘𝑥−𝜔𝑡) ∑ 𝐶𝑚𝑌𝑚(𝑦)

𝑀

𝑚=0

 

Where 𝐶𝑚 is the amplitude of the mth normal mode for the plate in 𝑦 direction, and 𝑌𝑚(𝑦) is the 

normalized (non-dimensional) mth mode shape of the plate wave propagating in 𝑦 direction and it 

has to satisfy the boundary conditions in 𝑦 = 0 and 𝑦 = 𝑏. The general form of 𝑌𝑚(𝑦) can be 

specified as: 

𝑌𝑚(𝑦) =
𝑄1 cos(𝛽𝑚𝑦) + 𝑄2 sin(𝛽𝑚𝑦) + 𝑄3 cosh(𝛽𝑚𝑦) + 𝑄4 sinh(𝛽𝑚𝑦)

√𝑄1
2 + 𝑄2

2 + 𝑄3
2 + 𝑄4

2

 
(23) 

where 𝑄1-𝑄4 are the constants of the plate normal mode shape in y-direction. For instance, the 

simply-supported supports impose the following boundary conditions at 𝑦 = 0 and 𝑦 = 𝑏 for 

𝑌𝑚(𝑦): 

𝑌𝑚(0) = 0 ,    𝑌𝑚
′′(0) = 0 ,     𝑌𝑚(𝑏) = 0 ,    𝑌𝑚

′′(𝑏) = 0   (24) 

By applying these conditions on Eq. (23), we can obtain 𝛽𝑚 = (𝑚 + 1)𝜋/𝑏 and the following 

form for 𝑌𝑚(𝑦): 

𝑌𝑚(𝑦) = sin (
(𝑚 + 1)𝜋

𝑏
𝑦) (25) 

By inserting Eqs. (16), (17) and (22) into Eq. (6), one obtains: 
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∑{𝐷[𝐶𝑚𝑌𝑚
(4)(𝑦) − 2𝐶𝑚𝑘

2𝑌𝑚
′′(𝑦) + 𝑘4𝐶𝑚𝑌𝑚(𝑦)] − 𝜌𝑝𝑑𝜔

2𝐶𝑚𝑌𝑚(𝑦) + 𝑘
∗𝐶𝑚𝑌𝑚(𝑦)

𝑀

𝑚=0

− 𝑖𝜔𝑐∗𝐶𝑚𝑌𝑚(𝑦) − 𝜌𝑔𝐶𝑚𝑌𝑚(𝑦)}

+ ∑ 𝑖𝜌𝜔 [𝑎𝑠𝑚 cos (
𝑚𝜋

𝑏
𝑦) (2𝑒−𝐴𝑚ℎ) + 𝑎𝑏𝑚 cos (

𝑚𝜋

𝑏
𝑦) (𝑒−2𝐴𝑚ℎ − 1)]

𝑀

𝑚=0

= 0 

(26) 

Also, substituting Eqs. (16) and (22) into the Eq. (9d) leads to: 

∑ 𝑎𝑏𝑚𝐴𝑚 cos (
𝑚𝜋

𝑏
𝑦) (1 + 𝑒−2𝐴𝑚ℎ)

𝑀

𝑚=0

= −𝑖 ∑ 𝜔 𝐶𝑚𝑌𝑚(𝑦)

𝑀

𝑚=0

 (27) 

Making use of the amplitude relations from Eqs. (20) and (21), multiplying both sides of Eqs. 

(17) and (18) by cos (
𝑛𝜋

𝑏
𝑦) (where 𝑛 = 0,1, … ,𝑀), and integrating over the plate width (i.e. 0 <

𝑦 < 𝑏), one may obtain: 

∑ 𝐶𝑚∫ {𝐷[𝑌𝑚
(4)(𝑦) − 2𝑘2𝑌𝑚

′′(𝑦) + 𝑘4𝑌𝑚(𝑦)] + 𝑘
∗𝑌𝑚(𝑦) − 𝜌𝑔𝑌𝑚(𝑦)}𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦)𝑑𝑦

𝑏

0

𝑀

𝑚=0

− 𝜌𝑝𝑑𝜔
2 ∑ 𝐶𝑚∫ 𝑌𝑚(𝑦) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦) 𝑑𝑦

𝑏

0

𝑀

𝑚=0

− 𝑖𝜔𝑐∗ ∑ 𝐶𝑚∫ 𝑌𝑚(𝑦) 𝑐𝑜𝑠 (
𝑛𝜋

𝑏
𝑦) 𝑑𝑦

𝑏

0

𝑀

𝑚=0

+ 𝜌𝜔 ∑ [
2𝐿𝑚𝑔

𝜔(1 + 𝑒−2𝐴𝑚ℎ)
𝑒−𝐴𝑚ℎ

𝑀

𝑚=0

+
𝐿𝑚𝑔𝑒

𝐴𝑚ℎ

2𝜔
(
𝜔2

𝐴𝑚𝑔
− 𝑡𝑎𝑛ℎ(𝐴𝑚ℎ)) (𝑒

−2𝐴𝑚ℎ − 1)]∫ 𝑐𝑜𝑠 (
𝑚𝜋

𝑏
𝑦) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦) 𝑑𝑦

𝑏

0

= 0     where𝑛 = 0,1, … ,𝑀 

(28-a) 

∑ 𝐿𝑚(𝜔
2 𝑐𝑜𝑠ℎ(𝐴𝑚ℎ) − 𝐴𝑚𝑔 𝑠𝑖𝑛ℎ(𝐴𝑚ℎ))∫ 𝑐𝑜𝑠 (

𝑚𝜋

𝑏
𝑦) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦) 𝑑𝑦

𝑏

0

𝑀

𝑚=0

= 𝜔2 ∑ 𝐶𝑚∫ 𝑌𝑚(𝑦) 𝑐𝑜𝑠 (
𝑛𝜋

𝑏
𝑦) 𝑑𝑦

𝑏

0

𝑀

𝑚=0

where 𝑛 = 0,1, … ,𝑀 

(29-a) 

Eqs. (28-a) and (29-a) can be expressed in terms of the dimensionless parameters as the 

followings: 

∑ 𝐶𝑚∫ {𝜀ℎ4[𝑌𝑚
(4)(𝑦) − 2𝑘2𝑌𝑚

′′(𝑦) + 𝑘4𝑌𝑚(𝑦)] + (
1

𝛾
− 1) 𝑌𝑚(𝑦)} cos (

𝑛𝜋

𝑏
𝑦)𝑑𝑦

𝑏

0

𝑀

𝑚=0

− 𝑅Ω2 ∑ 𝐶𝑚∫ 𝑌𝑚(𝑦) cos (
𝑛𝜋

𝑏
𝑦) 𝑑𝑦

𝑏

0

𝑀

𝑚=0

− 𝑖Ωζ ∑ 𝐶𝑚∫ 𝑌𝑚(𝑦) cos (
𝑛𝜋

𝑏
𝑦) 𝑑𝑦

𝑏

0

𝑀

𝑚=0

+ ∑ 𝐿𝑚 [
1

cosh(𝜇𝑚)

𝑀

𝑚=0

− (
Ω2

𝜇𝑚
− tanh(𝜇𝑚)) sinh(𝜇𝑚)]∫ cos (

𝑚𝜋

𝑏
𝑦) cos (

𝑛𝜋

𝑏
𝑦) 𝑑𝑦

𝑏

0

= 0       where𝑛

= 0,1, … ,𝑀 

(28-b) 
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∑ 𝐿𝑚(Ω
2 𝑐𝑜𝑠ℎ(𝜇𝑚) − 𝜇𝑚 𝑠𝑖𝑛ℎ(𝜇𝑚))∫ 𝑐𝑜𝑠 (

𝑚𝜋

𝑏
𝑦) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦) 𝑑𝑦

𝑏

0

𝑀

𝑚=0

= Ω2 ∑ 𝐶𝑚∫ 𝑌𝑚(𝑦) 𝑐𝑜𝑠 (
𝑛𝜋

𝑏
𝑦) 𝑑𝑦

𝑏

0

𝑀

𝑚=0

where 𝑛 = 0,1, … ,𝑀 

(29-b) 

where the dimensionless parameters are specified as: 

Ω = 𝜔√
ℎ

𝑔
,           𝛾 =

𝜌𝑔

𝑘∗
,            𝜀 =

𝐷

𝜌𝑔ℎ4
,            𝜁 =

𝑐∗

𝜌√𝑔ℎ
,           𝑅 =

𝜌𝑝𝑑

𝜌ℎ
 

𝜏 =  𝑡√
𝑔

ℎ
,           𝜇𝑚 = √(𝜇𝑥)

2 + (𝜇𝑦)
2
,          𝜇𝑥 = 𝑘ℎ,            𝜇𝑦 =

𝑚𝜋ℎ

𝑏
 

(30) 

Herein Ω is the non-dimensional frequency, 𝜇𝑥 is the shallowness parameter, 𝛾 is the restoring 

force coefficient, 𝜀 is the non-dimensional flexural rigidity, 𝜁 is the non-dimensional damping 

ratio and R is the mass ratio. Expanding Eqs. (28-b) and (29-b) and rewriting them in the matrix 

form yields: 

Ω2𝐌 ∙ 𝐋 + Ω𝐃 ∙ 𝐋 + 𝐊 ∙ 𝐋 = 𝟎 (31) 

Where 𝐌 ∈ ℝ(𝟐𝑀+2)×(𝟐𝑀+2) is the mass matrix, 𝐃 ∈ ℝ(𝟐𝑀+2)×(𝟐𝑀+2) is the damping matrix, 𝐊 ∈

ℝ(𝟐𝑀+2)×(𝟐𝑀+2) is the stiffness matrix, 𝟎 ∈ ℝ𝟐𝑀+2 is the zero vector, 𝐋 ∈ ℝ𝟐𝑀+2 is the 

(unknown) normal modes amplitude vector and they are expressed as: 

𝐌 = [
𝐌11 𝐌12

𝐌21 𝐌22
] 

(32) 
𝐃 = [

𝟎 𝟎
𝟎 𝐃22

] 

𝐊 = [
𝐊11 𝟎
𝐊21 𝐊22

] 

𝐋𝑇 = {𝐿0, 𝐿1, ⋯ , 𝐿𝑀−1, 𝐿𝑀 , 𝐶0, 𝐶1, ⋯ , 𝐶𝑀−1, 𝐶𝑀} 

Where 𝟎 ∈ ℝ(𝑀+1)×(𝑀+1) is the zero matrix and the components of sub-matrices 

𝐌11,𝐌12,𝐌21,𝐌22,𝐃22,𝐊11,𝐊21,𝐊22 ∈ ℝ
(𝑀+1)×(𝑀+1) can be identified as: 

𝐌11(𝑛,𝑚) = {

𝑏 cosh(𝜇𝑚) for 𝑛 = 𝑚 = 0

𝑏 cosh(𝜇𝑚)

2
for 𝑛 = 𝑚 ≠ 0

0                     for 𝑛 ≠ 𝑚

 (33a) 

𝐌12(𝑛,𝑚) = −∫ 𝑌𝑚(𝑦) cos (
𝑛𝜋

𝑏
𝑦) 𝑑𝑦

𝑏

0

 
(33b) 

𝐌21(𝑛,𝑚) =

{
 
 

 
 
−𝑏 sinh(𝜇𝑚)

𝜇𝑚
for 𝑛 = 𝑚 = 0

−𝑏 sinh(𝜇𝑚)

2𝜇𝑚
for 𝑛 = 𝑚 ≠ 0

0                for 𝑛 ≠ 𝑚

 (33c) 
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𝐌22(𝑛,𝑚) = −𝑅∫ 𝑌𝑚(𝑦) cos (
𝑛𝜋

𝑏
𝑦) 𝑑𝑦

𝑏

0

 (33d) 

𝐃22(𝑛,𝑚) = −𝑖ζ∫ 𝑌𝑚(𝑦) cos (
𝑛𝜋

𝑏
𝑦) 𝑑𝑦

𝑏

0

 (33e) 

𝐊11(𝑛,𝑚) = {

−𝜇𝑚𝑏 sinh(𝜇𝑚) for 𝑛 = 𝑚 = 0

−𝜇𝑚𝑏 sinh(𝜇𝑚)

2
for 𝑛 = 𝑚 ≠ 0

 0                      for 𝑛 ≠ 𝑚

 (33f) 

𝐊21(𝑛,𝑚) =

{
 
 

 
 𝑏 [tanh(𝜇𝑚) sinh(𝜇𝑚) +

1

cosh(𝜇𝑚)
] for 𝑛 = 𝑚 = 0

𝑏

2
[tanh(𝜇𝑚) sinh(𝜇𝑚) +

1

cosh(𝜇𝑚)
] for 𝑛 = 𝑚 ≠ 0

           0                                       for 𝑛 ≠ 𝑚

 (33g) 

𝐊22(𝑛,𝑚) = ∫ {𝜀ℎ4[𝑌𝑚
(4)(𝑦) − 2𝑘2𝑌𝑚

′′(𝑦) + 𝑘4𝑌𝑚(𝑦)] + (
1

𝛾
− 1) 𝑌𝑚(𝑦)} cos (

𝑛𝜋

𝑏
𝑦)𝑑𝑦

𝑏

0

 (33h) 

Now, after calculating the required matrices in Eq. (31) from Eqs. (33a)-(33h), the necessary and 

sufficient conditions for the presence of a non-trivial solution in terms of 𝐋 can be expressed as 

the following eigenvalue problem: 

det (Ω2𝐌+ Ω𝐃 + 𝐊) = 0 (34) 

Eq. (34) is the dispersion relation for the wave propagation through the plate in contact with the 

fluid due to the fluid free surface incident wave moving along the x-axis. Using the dispersion 

equation, one may obtain the relationship between the angular frequency and wavenumber of the 

propagating bending wave in the plate. The corresponding shapes of the normal modes are the 

eigenvectors of Eq. (34), while the general form of 𝑌𝑚(𝑦) for the simply supported boundary 

conditions at 𝑦 = 0 and 𝑦 = 𝑏is obtained in Eq. (25), for two other well-known types of 

boundary conditions (sliding-sliding and clamped-clamped) can be obtained as the followings. 

Sliding-Sliding 

At sliding boundaries, the slope and shear force are zero. Hence, the boundary conditions can be 

stated as: 

𝑌𝑚
′ (0) = 0,    𝑌𝑚

′ (𝑏) = 0,    𝑌𝑚
′′′(0) = 0,     𝑌𝑚

′′′(𝑏) = 0   (35) 

Substituting these conditions into Eq. (23) gives the transverse mode shape function as: 

(36) 𝑌𝑚(𝑦) = cos (
𝑚𝜋

𝑏
𝑦) 

Clamped-Clamped 

At clamped boundaries, the displacement and slope are zero. In other words: 

𝑌𝑚(0) = 0,    𝑌𝑚(𝑏) = 0,    𝑌𝑚
′ (0) = 0,    𝑌𝑚

′ (𝑏) = 0 (37) 

By inserting the above mentioned conditions into Eq. (23), one can obtain: 

𝑌𝑚(𝑦) = cos(𝛽𝑚𝑦) − cosh(𝛽𝑚𝑦) −
cos(𝛽𝑚𝑏) − cosh(𝛽𝑚𝑏)

sin(𝛽𝑚𝑏) − 𝑠𝑖𝑛ℎ(𝛽𝑚𝑏)
(𝑠𝑖𝑛(𝛽𝑚𝑦) − 𝑠𝑖𝑛ℎ(𝛽𝑚𝑦)) (38) 
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where the first ten values of 𝛽𝑚 have been listed in Table 1 [19]. 

Table 1 

The first ten values of 𝛽𝑚𝑏 for the plate with clamped-clamped boundary conditions. 

 

In order to verify the present solution, we can obtain the dynamic response of a similar problem 

but for a simplified case. A similar problem with sliding-sliding boundary conditions has been 

presented in [14] using rather a different solution method where only the contribution of the first 

mode has been considered in the system dynamic response (i.e. 𝑚 = 0). Using a similar method 

and substituting Eq. (36) into the Eqs. (28) and (29) and letting 𝑚 = 0, the following equations 

can be obtained: 

(39) 𝐿0(𝛺
2 cosh(𝜇0) − 𝜇0 sinh(𝜇0)) − 𝑖𝛺

2𝐶0 = 0    

(40) 𝐶0 {𝜀𝜇0
4 + (

1

𝛾
− 1) − 𝑅𝛺2 − 𝑖𝛺𝜁} + 𝑖𝐿0 [(

𝛺2

𝜇0
− tanh(𝜇0)) sinh(𝜇0) −

1

cosh(𝜇0)
] = 0 

By simplifying these equations, the dispersion relation can be stated as: 

𝛺0
4(𝑅𝛾𝜇0 + 𝛾 tanh (𝜇0)) + 𝑖𝛺0

3𝜇0𝜁𝛾 − 𝛺0
2(𝑅𝜇0

2𝛾 tanh(𝜇0) + 𝜀𝜇0
5𝛾 + 𝜇0) − 𝑖𝛺0𝜁𝜇0

2𝛾 tanh(𝜇0)

+ 𝜇0
2(1 − 𝛾) tanh(𝜇0) + 𝜀𝜇0

6𝛾 tanh(𝜇0) = 0 
(41) 

Eq. (41) is identical with the dispersion relation expressed in [14]. Likewise, by neglecting the 

flexural rigidity and also the plate mass, the dispersion relation presented in [13] can be 

extracted: 

𝛺0
4𝛾 tanh (𝜇0) + 𝑖𝛺0

3𝜇0𝜁𝛾 − 𝛺0
2𝜇0 − 𝑖𝛺0𝜁𝜇0

2𝛾 tanh(𝜇0) + 𝜇0
2(1 − 𝛾) tanh(𝜇0) = 0 (42) 

4. Results 

4.1. Validation 

To validate the results, the numerical results of the governing equations proposed in this study 

evaluated with results published in the literature. 

In Fig. 3, the frequency response of system by solving equation (42) is shown. The frequency 

response of system by considering assumptions of [13] is exactly the same as those presented in 

Fig. 3 of [13]. 

By solving Eq. (34) (dispersion relation), four values will be obtained for the frequency; two 

values for the plate mode and two values for the surface mode. These frequency values are in the 

form ±Ω𝑟 − 𝑖Ω𝑖 where Ω𝑟 and Ω𝑖 are the positive real numbers. It is worth noting that once the 

real part of frequency is negative, it shows that waves move along – 𝑥 direction. In this study, it 

assumed that waves move along +𝑥 direction [20]. 

10 9 8 7 6 5 4 3 2 1 𝑚 

32.9867 29.8451 26.7035 23.5619 20.4204 17.2788 14.1372 10.9956 7.8532 4.7300 𝛽
𝑚
𝑏 
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Fig. 3. Real and Imaginary parts of system frequency response of Eq. (42). 

First of all, we will check the convergence test. In Fig. 5, the convergence test for the first four 

frequencies has been presented for the plate with simple-simple end conditions. The results have 

been obtained by solving Eq. (27) for M=8 and M=9. It should be noted that the vertical and 

horizontal axes indicates the imaginary and real parts of the frequency, respectively. From here 

on and based on these results, the number of term in the series expansion, M, will be taken equal 

to 9 in all the following examples. 

Likewise, the first mode shapes of the plate and surface have been depicted in Fig. 6 for different 

boundary conditions (B.C.). The following dimensionless parameters have been considered to 

obtain Fig. 6: 

(63) 𝑅 = 0.01,       𝛾 = 0.9,          𝜀 = 0.01,       𝜁 = 0.6,              𝜇 = 5 

Unless mentioned otherwise, the above values have been taken to obtain the results. 

 
Fig.5. Convergence test for the frequency response. 

(Blue rectangle: M=8, Red triangle: M=9) 
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Fig. 6. First mode shape of the plate and surface for different boundary conditions. 

A close inspection reveals that the frequency and mode shape of the surface are almost the same 

for all boundary conditions at the large values of 𝜇. Therefore, the boundary conditions of the 

plate have almost no effect on the frequency and mode shape of the surface at deep channel. In 

addition, the frequency of the plate with clamped and sliding boundary conditions has the higher 

and lower values, respectively. 

4.2. Results 

In the subsequent sections, the effects of boundary conditions, plate’s rigidity and mass, damping 

ratio, restoring force of viscoelastic bed and wave number on the frequencies are investigated. It 

should be note that in all the following figures, the plate and surface modes have been 

distinguished by solid and dashed lines, respectively. 

4.2.1. Effect of boundary conditions 

In Fig. 7, the real and imaginary parts of the fundamental frequency for the plate and surface are 

displayed for different boundary conditions. 
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b) Real Part  

a) Imaginary Part 

Fig.7. Fundamental frequency of the plate and surface for different boundary conditions. 

It can be seen that for the plate mode, the sliding-sliding boundary condition has the lowest value 

of the real part of frequency and the clamped-clamped boundary condition has the highest value. 

In addition, the absolute value of the imaginary part of frequency for the sliding-sliding 

boundary condition and the clamped-clamped boundary condition are the highest and the lowest 

value, respectively. In other words, in the equal conditions, the plate with clamped-clamped 

boundary conditions attenuates waves faster. 

It is clear that the shallowness is proportional to the inverse of wavelength. By inspecting the 

surface modes, one can deduce that for the shorter waves (larger values of 𝜇), the real and 

imaginary parts of the surface mode are almost the same for all boundary conditions. While for 

the long waves, the clamped-clamped boundary conditions damps faster than the other two 

boundary conditions. 

4.2.2. Effect of plate rigidity 

Plate rigidity plays an important role in the dynamic response. In Fig. 8, its effects on the plate 

and surface modes has been investigated in which the real and imaginary parts of the frequency 

have been depicted for three values of 𝜀. It should be mentioned that unless mentioned otherwise 

the simple-simple end conditions have been considered for all subsequent results. 

By increasing the plate rigidity, the real part of the frequency increases while its imaginary part 

decreases. It means that a plate with more flexural rigidity attenuate waves faster. However, for 

the surface mode the effect of rigidity of plate is not very significant, especially for the real part 

of the frequency. 
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b) Real Part 

 
a) Imaginary Part 

Fig. 8. The effect of plate rigidity on the fundamental frequency of the system for the plate 

with simple-simple boundary conditions. 

4.2.3. Effect of plate mass 

The plate mass is another parameter that can influence the frequency of the system. In Fig. 9, the 

fundamental mode of the plate with simple end conditions has been calculated for three different 

values of the plate mass ratio. 

 
b) Real Part 

 
a) Imaginary Part 

Fig. 9. The effect of plate mass on the fundamental frequency of the system for the plate 



16 A. Asaiean et al./ Computational Engineering and Physical Modeling 3-4 (2020) 01-19 

with simple-simple boundary conditions. 

As it is expected, the effect of plate’s mass on the surface mode is negligible. There is a little 

changes in imaginary part of frequency of surface mode only for the long waves which means 

that the surface mode damps later by increasing the plate mass. For the plate mode, by increasing 

plate mass, the real part of the frequency decreases but the imaginary part of frequency increases. 

It means that a plate with higher density damps slower and oscillates with longer period. 

4.2.4. Effect of damping ratio 

Dampers are responsible to attenuate waves by simulate viscous behavior of muddy seabed. 

Therefore, it is crucial to investigate the influence of damping ratio on the frequency response. 

The imaginary and real parts of the fundamental frequency versus shallowness parameter for 

three different values of damping ratio have been depicted in Fig. 10. 

 
b) Real Part 

 
a) Imaginary Part 

Fig. 10. The effect of damping ratio on the fundamental frequency of the system for the plate 

with simple-simple boundary conditions. 

As can be seen for the surface mode, the damping ratio can only affect the wave propagation 

frequencies of the longer wave lengths. For long wave lengths and by increasing the damping 

ratio, the real part and the imaginary part of frequency decrease. 

For the plate mode, by increasing the damping ratio, the real and imaginary parts of the 

frequency decrease at all wave lengths.  

4.2.5. Effect of restoring force 

Referred to Eq. (30), the restoring force coefficient is proportional to the inverse of spring’s 

stiffness constant. In Fig. 11, the influence of the restoring force coefficient on the fundamental 

frequency of the plate and surface has been investigated. 
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For the short waves, the effect of restoring force on the real and imaginary parts of the surface 

mode is negligible. The notable effect of stiffness is on the real part of plate frequency in which 

by increasing the stiffness, the plate oscillates with a shorter period. 

 
b) Real Part 

 
a) Imaginary Part 

Fig. 11. The effect of restoring force on the fundamental frequency of the system for the plate 

with simple-simple boundary conditions. 

4.2.6. Effect of different modes 

The effect of the wave number on the first four transverse modes of the system for the plate with 

simple-simple boundary conditions has been plotted in Fig. 12. 

 
b) Real Part 

 
a) Imaginary Part 

Fig.12. The effect of wave number on the different modes of the system for the plate 

with simple-simple boundary conditions. 
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By inspecting the imaginary part of the plate frequency, one can say that by decreasing the wave 

length the rate of the damping will increase. For the plate mode, the real part of frequency 

increases by increasing mode of system, which means the plate oscillates with less period in 

higher modes. In addition, the plate in higher modes damps earlier. However, for the surface 

mode, increasing mode of system causes the increase of real part of frequency and imaginary 

part of frequency. However, for the real part of the surface mode, the increasing rate is not the 

same as those observed for the plate. 

5. Conclusions 

In this paper, the muddy seabed has been modeled as a viscoelastic foundation which is placed 

under a thin plate located at the bottom of a channel to investigate the vibrational behavior of the 

system. Arbitrary boundary conditions have been considered for the plate in the width direction. 

Unlike previous studies, the fluid-structure interaction system by considering the flexural rigidity 

and mass of the plate is analyzed in three dimensions in the present study. A new solution method 

has been presented to obtain the solution. It is shown that the system has four frequency 

responses i.e. two responses for plate mode and two responses for surface mode. 

The results are summarized as follows: 

1. Under different boundary conditions, the submerged plate with clamped-clamped boundary 

condition has lower period and attenuates waves faster. In other words, plate with higher flexible 

rigidity oscillates with less period attenuate the waves faster. 

2. The plate with less mass attenuate the waves faster. The result showed that the effect of mass 

of the submerged plate is important and it should be considered in the mathematical modeling of 

the system. 

3. As expected, waves attenuate faster by increasing the damping ratio. 

4. By increasing the stiffness of springs, the plate oscillates with lower period. 

5. By comparing different transverse modes under the same conditions, it is observed that in 

higher modes the plate oscillates with less period and attenuate faster. 
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