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The sensitivity of tall buildings subjected to the lateral loads 

is more than that of the gravity loads. Therefore, the 

conventional methods are not efficient yet, and new methods 

are proposed by designers to reduce the structural roof 

displacement, shear lag, overturning moment, and also 

increase the lateral resistance of the structures. In the design 

of tall structures, it is desirable to minimize the lateral 

stiffness of the structures for economic reasons. In this paper, 

the structure is modeled using the energy method and the 

continuous beam model. The outrigger's optimum position is 

calculated considering different loading patterns. It is 

assumed that the lateral stiffness of the structure changes 

with the height. An equivalent rotational spring is utilized to 

model the belt truss and outrigger system. The results show 

that the outrigger's optimum position depends on the type of 

the lateral load as well as how the stiffness changes in the 

height of the structure.  

Keywords: 

Framed tube; 
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1. Introduction 

Several resistant systems have been introduced to increase the efficiency of the framed tube 

structures. One of these systems is the combined system [1–9]. In this method, a relatively rigid 

https://doi.org/10.22115/CEPM.2020.230337.1107
https://doi.org/10.22115/cepm.2020.230337.1107
http://creativecommons.org/licenses/by/4.0/
http://www.jcepm.com/
mailto:kamgar@sku.ac.ir
https://doi.org/10.22115/CEPM.2020.230337.1107
https://www.orcid.org/0000-0002-6575-7122


 A. Salajegheh et al./Computational Engineering and Physical Modeling 3-3 (2020) 34-45 35 

shear core is combined with the framed tube and the outrigger systems. This leads to having a 

further reduction in the story displacement of the structure [10–25]. 

It is common to model the structure with a cantilever beam [7,22,26–30]. Besides, a linear 

rotational spring is utilized to model the interaction between the structure and the outrigger 

system. The linear rotational spring produces a moment that acts in the opposite direction of the 

structure subjected to the lateral load. Therefore, it reduces the lateral displacement of the 

structure. The important question is what position should be considered for the outrigger system 

to perform a better performance subjected to the lateral load. Minimizing the story displacement 

and drift ratio has been reviewed by several researchers to obtain the outrigger system's optimum 

position. Using this criterion, several researchers have calculated the outrigger’s optimum 

location subjected to the dynamic and static loads (e.g., earthquake and wind loads) [1–3,8,10]. 

In this research, three and two-dimensional buildings are considered to study the effect of the 

outrigger's optimum position in the dynamic responses of the structures. 

It is essential to determine the optimal values for engineering issues to reduce the cost and 

increase productivity. Besides, numerous methods have been used to determine optimal values in 

engineering problems [25,31–43]. The outrigger systems' behavior has been investigated by 

different literature [13,14,20,24,44–46]. Stafford Smith and Coull [45], as well as Taranath [14] 

proposed an approximate method for analyzing the belt truss systems. Also, Rahgozar et 

al. [24,44] examined the stress distribution and displacement of the combined system in tall 

buildings [24,44]. Hoenderkamp [4] and Hoenderkamp and Bakker [5] studied the effect of the 

shear wall system combined with the outrigger system on the lateral displacement of the 

structure. Kamgar et al [10,19] examined the responses of a combined system subjected to the 

critical earthquakes. 

The primary assumption for some of the existing literature is that the structure has a constant 

stiffness along with the height of the structure. In this paper, the main aim is to find the 

outrigger’s optimum position using energy criteria for the non-uniform tall building subjected to 

the lateral load. Therefore, the behavior of the tall structure is modeled using a continuous beam 

method. Also, a linear rotational spring is used to simulate the effect of the outrigger system. 

This spring has been located at the position of this system. Then, the amount of energy stored in 

the outrigger system is calculated based on the location of the system along with the height of the 

structure for different types of lateral loading (i.e., concentrated, uniformly and triangularly 

distributed lateral loading). The maximization of the values of stored strain energy in the belt 

truss system results in finding the outrigger’s optimum position. 

2. Formulation 

2.1. Calculation the strain energy stored in the equivalent rotational spring 

The following assumptions are used to model the studied structure, as shown in Fig. (1):  

1- The slabs are used to cover the floors of the stories, and it is assumed that they are rigid on 

their plane.  

2- An equivalent linear elastic rotational spring is utilized to simulate the effect of the outrigger 

system. 
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3- A constant distance is considered between the adjacent columns through height of the 

structure. 

4- The fixed-end conditions are considered for the shear core and framed tube at the bottom of 

the structure.  

5- The materials are linear and homogeneous, and they follow Hooke's law. 

6- The structure is symmetric around both of the main axes for all stories. Also, the coordinates 

for the center of mass and stiffness are the same, and therefore, the structure does not twist. 

7- The connection of the outrigger to the shear core is assumed to be rigid. The pinned-end 

conditions are considered for the exterior columns. Therefore, only the axial forces are 

transmitted to the outer columns. 

According to the above assumptions, the structure has variable lateral stiffness along with the 

height of the structure (see Fig. 1). 

 
Fig. 1. A continuous model for the studied structure. 

It should be noted that in Fig. (1), H, a, x, and Kr show the total height of the structure, the 

outrigger’s position from the base of the structure, the distance from the bottom of the structure, 

and the linear rotational spring, respectively. 

The amount of stored strain energy is calculated as follows: 

2
r a

1
E = k θ

2
 (1) 

where aθ  shows the rotation of the outrigger system at its position. 

The external work is defined as the done work subjected to lateral loading (e.g., wind and 

earthquake load). The members of the structure store this work as strain energy. Therefore, the 

outrigger and belt truss system can store a part of this input energy as a particular member of the 

structure. Finally, when the energy absorbed by the spring is at its maximum value, the spring 

has located at its best position. This implies that other structural members undergo less input 

energy subjected to the lateral load, and therefore it reduces the damage in the structural 

members. 

Therefore, the derivative of the strain energy should be calculated relative to the position of the 

rotational spring from the bottom of the structure (a). This value is set to zero to find the 

outrigger’s optimum location (i.e., dE = 0
da

).  
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In the next section, the values of aθ  and rk  are computed as a function of the position of the 

rotational spring (a). Also, the following section presents the values of equivalent stiffness for 

the outrigger system. 

2.2. Calculation the equivalent stiffness of the rotational spring 

In this section, it is assumed that the lateral (bending stiffness EI(x)) and axial stiffness (AE(x)) 

of the structure change along with the height of the structure. These values are considered as Eq. 

(2) based on Ref. [18]: 

m+2
0

m +1
0

EI(x) = EI (1+ βx)

AE(x) = AE (1+ βx)


 (2) 

where x, EI0, and AE0 present the height of the structure from the base, the values of bending and 

axial stiffness at the bottom of the structure, respectively. The parameters m, m , and β are 

selected in such a way that they can trace the flexural and axial stiffness along with the height of 

the building. 

In the combined system, the structure's curvature will not be like a single beam when the 

building is exposed to the horizontal loads. The belt truss and outrigger system connect the shear 

core to the external columns. This leads to the formation of a turning point. Therefore, according 

to Fig. (2), the set of external columns and the outrigger system reduce the lateral deformations 

and base moment.  

It has been known that the relationship between the moment (M) and the rotation of the rotational 

spring can be written as follows, according to Figs. (1-3): 

r a
M = K θ  (3) 

a
θ shows the amount of rotation of the cantilever beam at the outrigger’s position. Also, the 

following equation can be obtained based on Fig. (2): 

M = F d  (4) 

 
Fig. 2. Reduction in the values of structural displacement considering the effect of the outrigger system. 
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The amount of axial elongation for the exterior columns (δ ) can be computed by considering 

Eq. (2) subjected to the axial force F (see Fig. 2). 

a

m
0 0

F F 1
δ = dx = 1- 

AE(x) βAE m (1+βa)

 
 

 
 




 (5) 

  

Also, the produced moment in the rotational spring and the displacement created in the exterior 

columns connected to the outrigger can be calculated using Eqs. (6 and 7). 

M = F ×d  (6) 

a

d
δ = θ ×

2
 (7) 

On can computed the equivalent stiffness of the rotational spring using Eqs. (5-7). 

2
0

r -m

βAE m d
K =

2 ×(1 - (1+ βa) )



 (8) 

As can be deduced from Eq. (8), the equivalent stiffness for the outrigger system depends on the 

axial stiffness of the exterior columns and also rate of changes in the axial stiffness of the 

surrounding columns through the height of the structure (AE0, m , and β ), the distance between 

the adjacent exterior columns (d) and the outrigger’s position (a). 

2.3. Calculation the outrigger’s optimum position subjected to the uniformly distributed 

lateral load 

Based on the superposition principle, the value of aθ  (rotation angle of beam at the outrigger’s 

position) can be calculated by the summation of a,1θ  (due to lateral loading) and a,2θ  (created by 

the concentrated moment applied to the structure in the outrigger’s location). According to Fig. 

(3), the a,1θ  can be calculated as follows when a uniformly distributed lateral load will be applied 

to the structure with intensity w: 

2 2

a a

a,1 2 m+1 mm+2
00 0 0

1-m2

m+1 3 m0 0

m+1 2

wH wx
(wHx - - )

M(x) wH 1 12 2θ = dx = dx = ( -
β EI (m+1)(1+βa) m(1+βa)EI(x) EI (1+ βx)

(1+βa)1 wH 1 1 w 2
+ ) + (  - )  - ( +

m(m+1) 2βEI (m+1) (1-m)(m+1)(1+βa) 2β EI m(1+βa)

1 2
 - - )

(m+1)(1+βa) m(1-m )

 

 
(9) 

Also, the value of a,2θ parameter is equal to: 

a
r a r a

a,2 m+100

K ×θ K ×θ 1
θ = dx = - ( -1)

(m+1)βEI (1+βa)EI(x)
  (10) 
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Therefore, the value of the aθ parameter can be computed as follows: 

1
a a,1 a,2

2

2

1 2 m+1 m m+100

1-m

3 m m+1 2
0

-(m+1)2
0

2
0

I
θ = θ +θ =

I

wH 1 1 1 wH 1
I = ( -  + ) + (

m(m+1) 2βEIβ EI (m+1)(1+βa) m(1+βa) (m+1)(1+βa)

(1+βa)1 w 2 1 2
- )  - ( + - - )
(m+1) (1-m)2β EI m(1+βa) (m+1)(1+βa) m(1-m )

[(1+βa) -1]AE m d
I = 1+

2EI (m+1) [1-(1


-m+βa) ]

 (11) 

Now using Eqs. (1), (8) and (11), the outrigger’s optimum position can be calculated by setting 

the derivative of the strain energy stored in the spring to zero. The derivative should be computed 

relative to the position of the rotational spring (a). By definition a new variable as ξ = (1+ βa) , 

for this state, the outrigger's optimum location can be computed as follows:  

ar
m+1 m

r a

2

m+1 2 m-1 m m+1 2

2-(m +1) -(m+2) -(m+1) -(m+2)

-m

dθdKdE dE dE H 1 1 1
= + = 0 { ( - + ) 

β m(m+1)(m+1)ξ mξda dK da dθ da

H 1 1 1 1 2 1 2
 + ( - )  -  ( +  - - )}×

2 (m+1)(m+1)ξ 2β (1-m)ξ mξ (m+1)ξ m(1-m )

H H 1-m ξ
+{ (-ξ +ξ ) - ξ  -

2β 2β2 (1-ξ )

 
 
 


  



 -(m+1) -(m+2)-m

2

3 5

4 6

(ξ - 2ξ +ξ )}

 I  I
-{ }×{ }= 0

 I  I

 (12) 

where 

2

3 2 m+1 m m+1

1-m

3 m m+1 2

2
0

4 -m m+1
0

-(m+2) -(m +1) -(m+1)2 -m
5 0

6

H 1 1 1 H 1 1
I = ( - + ) + ( - )  

m(m+1) 2β (m+1)β (m+1)ξ mξ (m+1)ξ

1 ξ 2 1 2
- ( + - - )

(1-m)2β mξ (m+1)ξ m(1-m )

AE m d 1
I = 1+ ( -1)

2(m+1)EI (1-ξ ) ξ

I = AE m d ×{-(m+1)βξ (1- ξ )+m βξ (1- ξ )}

I = 2(







 

-m 2
0m+1)EI (1- ξ )



 
(13) 

By considering a constant stiffness along with the height of the structure ( m = -2  and m = -1 ), 

the outrigger’s optimum location is computed as a=0.4417H using Eq. (12) . 
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2.4. Calculation the outrigger’s optimum position subjected to the concentrated lateral 

load with intensity P 

Similar to the previous section, when the structure is loaded by a concentrated lateral load (P) 

located at the top of the structure, the a,1θ is obtained as follows: 

a a

a,1 m+2 2 m+1
0 0 00

m m+10

M(x) P(x - H) P 1 1
θ = dx = dx = { -

(m+1)β EI (m+1)(1+βa)EI(x) EI (1+ βx)

1 1 PH 1 1
 - + } + {  - }

m βEI (m+1)m(1+βa) (m+1)(1+βa)

 

 (14) 

Also, the value of the a,2θ parameter is similar to Eq. (10). Therefore, the value of the angle aθ

can be computed as follows: 

7
a a,1 a,2

8

7 2 m+1 m
0

m+10

2
0

8 -m m+1
0

I
θ = θ +θ =

I

P 1 1 1 1
I = { -   - + }

m(m+1)β EI (m+1)(1+βa) m(1+βa)

P 1 1
      + {  - }  

βEI (m+1)(m+1)(1+βa)

AE m d 1
I = 1- (1- )

2EI (m+1)(1-(1+βa) ) (1+βa)



 (15) 

Now using Eqs. (1), (8) and (15), the outrigger’s optimum position can be calculated by setting 

the derivative of the strain energy stored in the spring to zero. Therefore, the outrigger’s 

optimum position can be computed as follows: 

ar
2 m+1 m m+1

r a

-(m +1)
-(m+2) -(m+1) 9

-m

10

dθdKdE dE dE 1 1 1 1 1 1 1
= + = 0  { ( -  + - ) + (

m m+1 ββ (m+1)ξ mξ (m+1)ξda dK da dθ da

 Iβ+11 1-βm ξ
 - ) }×  +2×{- ξ + ξ + }= 0

(m+1) β β (1-ξ )
 I

 
 
 


  




 (16) 

where 

2
0

9 2 m+1 m m+1
0

-(m+2) -(m +1) -(m+1)-m

2 -(m+1)
-m 20

10 -m0

AE m d1 1 1 1 1 1 1 1
I = { ( - - + ) + ( - ) }×{ }

m+1 m β (m+1)β (m+1)ξ mξ (m+1)ξ 2EI (m+1)

     ×{(m+1)βξ (1- ξ )- m βξ  (1- ξ )}   

AE m d 1-ξ
I = {1- ( )}{1- ξ }

2(m+1)EI 1-ξ













 (17) 

Also, assuming a constant stiffness along with the height of the structure ( m = -2  and m = -1 ), 

for this state, the outrigger’s optimum position is calculated to be equal to a=0.6667H. 
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2.5. Calculation the outrigger’s optimum position subjected to the triangularly distributed 

lateral load with intensity W 

Like the previous section, when the structure is loaded by a triangularly distributed lateral load 

with intensity w, the a,1θ is calculated as follows: 

32

a a

a,1 m+2 4 m-2
0 0 00

m-1 m m+1

2 m0

wHx wxwH
(- + - )

3M(x) -w 1 12 6Hθ = dx = dx = {- +
(m-2)6β EI H (m-2)(1+βa)EI(x) EI (1+ βx)

3 3 3 3 1 1
       + - - + + - }

m-1 m (m+1)(m-1)(1+βa) m(1+βa) (m+1)(1+βa)

WH 1 1 1
        + {- +  +

m2β EI (m+1)(1+βa)m (1+βa)

 

m+1

2

m+10

1
- }

(m+1)

WH 1
       - {1- }

3βEI (m+1) (1+βa)

 (18) 

Also, the value of the angle a,2θ is similar to Eq. (10). Therefore, the value of the angle aθ can be 

computed as follows: 

11
a a,1 a,2

12

11 4 m-2 m-1 m
0

m+1 2 m
0

2

m+1 0

I
θ = θ +θ =

I

-w 1 1 3 3 3
I = {- +  + - -

m-1(m-2)6β EI H (m-2)(1+βa) (m-1)(1+βa) m(1+βa)

3 1 1 WH 1 1
       + + - } + {- +

m m(m+1)(m+1)(1+βa) 2β EI m (1+βa)

1 1 WH 1
        + - } - {1-

(m+1) 3βEI (m+1)(m+1)(1+βa) (1 m+1

-(m+1)2
0

12 -m0

}
+βa)

[(1+βa) -1]AE m d
I = 1+

2EI (m+1) [1-(1+βa) ]


 
(19) 

Now using Eqs. (1), (8) and (19), the outrigger’s optimum position can be calculated as follows: 

ar
4 m-2 m-1

r a

m m+1 2 m m+1

2 -(m +1)

m+1 -m

dθdKdE dE dE 1 1 1 3
= + = 0  {- (- + +

(m-2)6Hβ (m-2)ξ (m-1)ξda dK da dθ da

3 3 3 1 1 H 1 1 1 1
        - - + + - ) + (- + + - ) 

m m+1 m(m-1) (m+1)mξ (m+1)ξ 2β mξ (m+1)ξ

H 1 1 -βm ξ
       - (- + )}× 

3β (m+1)(m+1)ξ  2(1-ξ )

 





 -(m-1) -(m+1) -(m+2)-m

3

2
-(m+1) -(m+2) -(m+2) 13

4 m-2 m-1
14

m m+1 2 m m+1

1
 - ×(ξ - 3ξ +3ξ - ξ )

6Hβ

IH H 1 1 1 3
      + ×(ξ - ξ )- ξ +{ }×{- (- + +

32β (m-2)6Hβ (m-2)ξ (m-1)ξI

3 3 3 1 1 H 1 1 1
        - -  + + - )+ (- + +

m m+1 m(m-1) mξ (m+1)ξ 2β mξ (m+1)ξ


 
 
  

2

m+1

1
- )

(m+1)

H 1 1
       - (- + )}

3β (m+1)(m+1)ξ

 
(20) 
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where 

2
0 15

13 -m 2
0

2 -(m+1)
0

14 -m0

-(m+2) -(m+1) -(m +1)-m
15

AE m d I
I =

2(m+1)EI [1-ξ ]

AE m d ξ -1
I = 1+ ( )

2(m+1)EI 1-ξ

I = (m+1)βξ [1- ξ ] +m β[ξ -1]ξ













 (21) 

 

Therefore, by assuming a constant stiffness along with the height of the structure ( m = -2  and 

m = -1 ), for this state, the outrigger’s optimum position can be computed as a=0.4903H using 

Eq. (21). 

3. Results 

Table (1) shows a comparison between the results of the present study and other existing 

research. 

Table 1 

A comparison between the outrigger’s optimum position obtained by different methods. 

Load type 

Outrigger’s optimum position  

Present study 

Kamgar and 

Rahgozar [10] 

and Jahanshahi 

and Rahgozar 

[6] 

SAP 2000 [6] 

 

Rahgozar and 

Sharifi [24] 

Uniformly 

distributed lateral 

load 

0.4417 H 0.441 H 0.400 H 0.545 H 

Concentrated load 0.6667 H 0.667 H 0.700 H 0.667 H 

Triangularly 

distributed lateral 

load 

0.4903 H 0.490 H 0.530 H 0.571 H 

 

It can be concluded from Table 1 that a good agreement exists between the results of the present 

study and existing research. Besides, the results show that the outrigger’s optimum position 

depends on the type of the lateral load and also how the axial and bending stiffnesses of the 

structure change through the height of the structure (see Eqs. (12, 16, and 20) and Table 1). It 

should be noted that using the introduced equations (see Eqs. 12, 16, and 20), the outrigger’s 

optimum location can be calculated for the desired stiffness changes along with the height of the 

structure.  

4. Conclusion 

Here, the outrigger's optimum position is determined for the desired stiffness changes along with 

the height of the structure. Therefore, the structure is modeled using the energy method and the 
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continuous beam model. Then, the outrigger’s optimum position is determined for different 

lateral loading patterns. It is assumed that the lateral stiffness of the structure varies through the 

height of the structure. Besides, an equivalent rotational spring is selected to simulate the effect 

of the outrigger and belt truss system. Finally, the outrigger’s optimum location can be calculated 

by setting the derivative of the strain energy stored in the spring to zero. The results show that 

the outrigger’s optimum position depends on the type of lateral load and the structure's stiffness.  
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