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The main aim of this work is to observe the fluid flow and 

heat transfer characteristics through porous media at the 

REV (Representative Elementary Volume) scale in an 

enclosed squared cavity using LBM (Lattice Boltzmann 

Method) instead of traditional FVM, FDM, or FEM. Results 

are generated by varying the porosity ( = 0.4, 0.6, 0.9), and 

other dimensionless variables: Rayleigh number (Ra = 103, 

104, 105, 106), and Darcy number (Da =10-2, 10-3). The 

enclosed cavity was considered to be half-filled with pore 

materials, with horizontal porous layer and vertical porous 

layer, these two cases are studied for all the considered 

parameters. The influence of the dimensionless parameters as 

well as porosity on the fluid flow and heat transfer 

characteristics has been discussed in detail along with the 

influence of the placement of the pore material inside the 

cavity. In the end, it is observed form the results that the 

nature of the flow and rate of the heat transfer are affected 

significantly by the Ra values, Da values, and porosity level. 

The placement differences of the pore materials further 

shows differences in the fluid flow and heat transfer 

characteristics. A new and simpler forcing term for the 

porous media is used. This study can be useful while using a 

porous media in numerical designs and experimental designs. 

Fortran 90 is used for numerical simulations. 
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1. Introduction 

The importance of studying fluid flow considering a porous media and its heat transfer grabbed 

attention after researchers started to encounter theoretical and experimental discrepancies in 

applications like managing thermal distribution of any electronics cooling system, enhancement 

of heat transfer system, flow simulation etc. To computationally study fluid flow in porous 

materials and its heat transfer characteristics, many researchers relied on conventional simulation 

techniques like finite-difference[1,2], finite-volume [3–5] and finite-element methods [6,7], 

which are associated with discretization of macroscopic continuum equations. Therefore, the 

requirement of an accurate tool for simulating at microscopic level is still required.  

Lattice Boltzmann Method (LBM), an alternative simulation technique, is relevant to both 

microscopic and macroscopic levels since it considers the behaviour of a group of fluid particles 

as one single unit. The LGA (Lattice Gas Automata), the origin of the LB-method, was initially 

used to numerically study fluid flow through porous media in the 1980s at different scales [8,9]. 

Flows in porous media can be classified in three scales namely: pore scale; REV scale; and; 

domain scale [10]. The REV scale is characterized as a least component and it is highly suitable 

for a porous flow, and domain scale>>REV scale>>pore scale [11]. The advantages of LBM are 

due to its simplicity and accuracy. Since LBM is the combination of microscopic model together 

with the mesoscopic kinetic equations of fluids, the kinetic characteristics of the method and 

elaborate bounce-back conditions for no-slip boundary condition makes it easier to design fluid 

flow considering a porous media in CFD studies. LBM is flexible to implement for rather 

composite designs, and has been a popular approach among the researchers to study multi-

phase/multi-component fluid flows. The simulation technique was found to be less time-

consuming and more accurate than some classical simulation methods as LBM does not require 

solving Laplace formulation of all computational Time-Steps to suit continuity equation for 

transient and incompressible flows, but it’s essential to solve Navier-Stokes equation [12,13]. 

Numerical simulation of flows and heat transfer considering porous mediums requires solution of 

certain equations. Earlier, Darcy’s equation had normally been utilized by research communities, 

but for fluid flows with high velocities, experimental data weren’t found to be in accord with the 

theoretical prediction [14]. Therefore, the alterations were established by Forchheimer’s equation 

[15,16] together with Brinkman’s equation [17,18]. The Forchheimer’s equation takes into 

account the influence of non-linear drags caused by solid matrix, whereas Brinkman’s 

formulation involves viscous stresses led by solid boundaries. When the values of Re or Da is 

greater, non-linear drag coefficients have to be counted. On the other hand, Brinkman’s alteration 

of the Darcy’s formulation has substantial impact on the energy transportation method [14]. 

Therefore, combination of Brinkman and Forchheimer’s equations can be considered as an 

appropriate approach for numerical study of flow and heat transfer considering a porous medium, 

which will resolve both viscous and inertial terms. Although the method is complicated it was 

found to be a good alternative predicting the heat transfer and fluid mechanism in the system 

which is considered to be non-Darcian [14,19,20]. The reliability of LBM to get adjusted into 

Brinkman-Forchheimer equation was earlier reported to be effective by some of the researchers 
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[14,21], but certain dimensionless parameters’ assistance and influence should be mentioned here 

as well. 

When exercising the fluid flow simulation considering a porous media, apart from LBM together 

with Brinkman-Forchheimer equation, three other dimensionless characters namely, Ra, Nu, and 

Da have to be valued. The Ra number describes the intensity of the fluid behaviour, Nu number 

is highly associated with the type of flow, either laminar (low Nu, close to 1) or turbulent flow 

(high Nu, between 100-1000), and Da number shows the relative impact of the permeability of 

the pore material against the cross-sectional area of this medium, i.e., squared of the diameter. 

Therefore, the values of those dimensionless parameters can describe the type or genre of fluid 

flow numerically, and thus the qualitative and quantitative performance of the simulations 

carried out in this paper can be truly evaluated. 

In the light of above requirements and parameters, some of the relevant research works can be 

discussed here in brief. Tong and Subramanian [22] performed an analysis through rectangular 

enclosures partially filling with porous medium by finite-difference (FD) technique varying Ra 

number and Da number to show the influence of those dimensionless parameters. Although the 

results indicate the importance of squared cavity considering partially-filled porous medium to 

numerically study fluid flow and heat transfer, however, FD technique requires more 

computational times to get ‘converged’ than LBM for higher Ra number, as the former needs 

resolving the Poisson's formulation addressing the pressure term [14]. In addition, simulations 

carried out by Tong and Subramanian[22] were limited to vertical analysis only. Later, the 

research by Guo and Zhao [11] to study heat transfer through porous media showed interesting 

comparisons between different techniques, but a firm statement on heat transfer from the 

horizontal position was still lacking as well as the influence on heat transfer for highly porous 

medium (e.g., ℇ=0.9). The impact of high porosity was numerically evaluated by Zhao et al.[23] 

and Yao et al. [24] for natural convection considering porous media, and results have not been 

rehearsed here. Kumar et al. [25] numerically studied a flow of natural convective nature in an 

enclosed squared porous cavity considering non-linear and inertial influences. This work 

computationally solved the “dimensionless non-linear coupled partial differential equations” 

together with suitable sets of boundary conditions with the FDM. Vertical walls had the same 

temperature and horizontal walls had two dissimilar temperatures and the cavity was inclined at 

𝛾 = 00, 150 , 450, 750 angles. Ameur et al. [26] explored the possibility of reduction of 

temperature, for cooling purposes, considering “hot shear thinning fluids” flowing throughout a 

cylinder. CFX code was used to numerically run the simulation. Two techniques, the counter 

flow and the baffling technique, were explored to figure out the most efficient technique for a 

cooling process. Changes of flow fields and thermal fields were observed regarding the flow 

rates and the baffles’ pitch ratios. The outcomes demonstrated a big increase in heat transfer rates 

while implying two strategies at the same time. Sobamowo et al.[27] worked on 

“magnetohydrodynamic squeezing flow” for nano-fluid considering a porous medium where two 

parallel plates were implanted in. It was found that if the velocity of the flow rises during the 

time of squeezing, the Ha (Hartmann number) value and squeezing numbers goes downward, yet 

in the time of separation, the fluid’s velocity rises when Ha value and squeezing value is 

increased. Furthermore, an increase in nanofluid’s velocity is additionally observed with a rise in 
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Ha value in a situation of plates moving apart. Still, it was shown that a rise in nanotube 

concentration causes a rise in the velocity of flow fields at the time of squeezing flow. However, 

some of the results in the literature do not contain the impact of pore materials in flow physics of 

the fluid and heat transfer on any physical or computational applications. Most of the numerical 

studies are limited on fluid flow, heat transfer and velocity profiles, but it is also important to 

show the extensions of the results for any further applications. 

One efficient method to numerically study fluid flow and heat transfer may be established while 

considering a squared shape or rectangle shape enclosed cavity contained with pore materials. 

The solid matrix generally employs a tiny bit of an isolated space, yet due to its well built 

structure, the used surface is large enough to resist the flow. Therefore, the porous layers work as 

an insulator. A practical application of this particular concept is seen in the indoor heating or 

cooling system, in this technology the air spaces amongst the wall panels are isolated using light-

weight materials like fibreglass[22]. In most of the cases, the enclosures are considered to be 

filled with porous matrix when insulation is needed. This paper investigates the nature of flow as 

well as heat transfer through a enclosed cavity which is partially filled with pore materials. From 

both engineering and mathematical point of views, the purpose is pretty much straightforward. A 

cavity with partially filled porous material (insulation) will certainly save both the capital and 

operational costs, considering the fact that the concept of insulation is better optimized. 

In this paper, LBM is used to study characteristics of the fluid flow and rate of heat transfer 

through partially filled porous medium in a squared shape cavity having two dissimilar forms of 

porous layers namely, horizontally filled porous layer and vertically filled porous layer, at 

different cases. The simulations were carried out at the REV scale varying Ra values (𝑅𝑎 =

 103, 104, 105, 106), Da values (𝐷𝑎 = 10−2, 10−4), and, 𝜀 values (𝜀 = 0.4, 0.6, 0.9), and average 

Nu numbers (𝑁𝑢𝑎𝑣𝑔) have been recorded to investigate the patterns and changes of the fluid in 

terms of flow and heat characteristics. The dependability of the LBM studying heat transfer in 

porous materials with the Brinkman-Forchheimer mathematical formula has been validated with 

two sets of numerical simulations. The validation outcomes were observed to be in excellent 

agreement with some of the benchmark dataset. All the computer simulations are carried out 

using Fortran 90 code. The computing tool used for these numerical simulations is Fortran 

PowerStation 4.0. Data sets are generated using this tool and the visualised using Tecplot. The 

output data sets are studied producing 𝑁𝑢 value, 𝑁𝑢𝑎𝑣𝑔 value, velocity fields, and, contours or 

isotherm fields along with contours of streamlines. 

2. Problem statement and physical geometry 

This current work aims to study the flow characteristics and heat transfer characteristics in 

geometrical formations presented in Fig.1. Figure 1 clearly illustrates the schematic diagram of 

physical geometry of the design used for this work. This geometry along with the combination of 

varying Ra values (𝑅𝑎 =  103, 104, 105, 106), Da values (𝐷𝑎 = 10−2, 10−4), and, 𝜀 values (𝜀 =

0.4, 0.6, 0.9), will present a data set stating the influence of porous media in a free flowing fluid. 

Since these cavities contain both free flowing fluid zone and partially filled porous zone at the 

same time, this work will clearly show the characteristic differences in two different zones. The 
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conductive and convective heat transfer natures, and, the nature of free flowing fluid compared 

to fluid’s flow pattern in the porous zone, are the main focus of this study. 

 
Horizontal porous layer 

 
Vertical porous layer 

Fig. 1. Schematic diagrams of physical geometry of the design. 

The physical geometry of this paper is based on the porosity and insulation property, as discussed 

in the previous section. The 2D enclosures, considered here are partially filled up containing 

porous materials. The lattice size of the cavity is 128 × 128. The investigation of the fluid’s flow 

characteristics through the cavity, and, heat transfer rate characteristics of the enclosed system, 

has been done from two positions, one having a horizontal porous layer and another having a 

vertical porous layer. At first, the investigation has been done for a cavity having half-filled 

horizontal porous layer, as described in Fig. 1(a), where the lower part contains the porous layer. 

Later, this study was extended to observe the behaviour of the fluid’s flow characteristics and 

heat transfer characteristics in the cavity of the same lattice size, but this time left half of the 

cavity is considered to contain porous matrix, as shown in Figure 1 (b). In both cases, the left 

wall of the squared cavity is considered to be hot, and the right wall is considered be cold. 

Furthermore, upper and lower boundary walls of the enclosures are thermally isolated, that 

means there are no differences between these two walls. 
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3. Mathematical formulations 

3.1. Lattice boltzmann model 

In this work, the mathematical terms of LB method is affiliated with the equation for continuity, 

the equation for Brinkman-Forchheimer, and the equation for energy transfer. The equations can 

be described as in the followings [14,21]: 

∇. 𝑢̅ = 0 (1) 

𝜕𝑡𝑢̅ + (𝑢̅. ∇) (
𝑢

𝜀
) = −

1

𝜌
∇(𝜀𝑝) + 𝑣𝑒∇2𝑢̅ + 𝐹̅ (2) 

𝜕𝑡𝑇 + ∇. (𝑇𝑢̅) = 𝛼∇2𝑇 (3) 

Where, 𝜀 defines porosity of the material, 𝑣𝑒 is the effective viscosity, with α being the thermal 

diffusivity. 𝐹̅ is the overall body force. The total body force can be defined with the Ergun’s 

relation [28]: 

𝐹̅ = −
𝜀𝑣𝑘

𝐾
𝑢̅ −

1.75

√150𝜀𝐾
|𝑢̅|𝑢̅ + 𝜀𝐺̅ (4) 

Here, 𝑣𝑘 represents the kinematic viscosity, K being the permeability, and 𝐺̅ defines the 

buoyancy force. 

Without the pore materials, Eq. 2 becomes the classical Navier-Stokes equation representing free 

flows of fluid. The term 𝑣𝑒∇2𝑢̅ of Eq. 2 represents the Brinkman component considering the 

inclusion of a solid materialistic boundary. A thin boundary layer might be used, but can’t be 

negligible for solving mass and heat transfer problems. In addition, the terms −
𝜀𝑣𝑘

𝐾
𝑢̅ and 

1.75

√150𝜀𝐾
|𝑢̅|𝑢̅ of Eq. 4 respectively represent the linear (Darcy) and non-linear (Forchheimer) drags 

caused by the inclusion of a pore material. Interestingly, not considering the non-linear 

component, the whole Eq. 2 is the Brinkman-extended Darcy formulation. 

The kinetic equations for two distribution functions namely, fi and gi are addressed by the thermal 

energy distribution LB-method as [29,30]: 

𝑓𝑖(𝑥 + 𝑒𝑖̅∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖(𝑥, 𝑡) = −
𝑓𝑖(𝑥,𝑡)−𝑓𝑖

𝑒𝑞(𝑥,𝑡)

𝜏𝑣
+ ∆𝑡𝐹𝑖 (5) 

𝑔𝑖(𝑥 + 𝑒𝑖̅∆𝑡, 𝑡 + ∆𝑡) − 𝑔𝑖(𝑥, 𝑡) = −
𝑔𝑖(𝑥,𝑡)−𝑔𝑖

𝑒𝑞(𝑥,𝑡)

𝜏𝑐
 (6) 

Eq. (5) recovers the Eqs. (1-2), and Eq. (6) defines the progress of the internal energy that directs 

to Equation (3). The macroscopic measures: density of the fluid, velocity as well as temperature 

can be written as in the followings[31]: 

𝜌 = ∑ 𝑓𝑖𝑖  (7) 

𝑢̅ = ∑
𝑒𝑖̅𝑓𝑖

𝜌𝑖  (8) 
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𝑇 = ∑ 𝑔𝑖𝑖  (9) 

The equilibrium distribution function regarding the D2Q9 design is[11]: 

𝑓𝑖
𝑒𝑞 = 𝜔𝑖𝜌 [1 +

3𝑒𝑖̅.𝑢

𝑐2 +
9(𝑒𝑖̅.𝑢̅)2

2𝜀𝑐4 −
3𝑢2

2𝜀𝑐2] (10) 

Here, 𝜔𝑖 is the weighed factor, and c stands for lattice spacing. In suppose of the D2Q9 design, 

the discrete velocity components 𝑒̅𝑖 have separate values [32]: 

𝑒̅0 = 0 (11a) 

𝑒̅𝑖 = 𝑐 [cos(𝑖 − 1)
𝜋

2
] ;  𝑖 = 1 − 4 (11b) 

𝑒̅𝑖 = √2𝑐 [cos(𝑖 − 5)
𝜋

2
+

𝜋

4
] , [sin(𝑖 − 5)

𝜋

2
+

𝜋

4
] ;  𝑖 = 5 − 8 (11c) 

The weighted factors are 𝜔0 = 4 9⁄ , 𝜔𝑖 = 1 9⁄  for i=1-4, and 𝜔𝑖 = 1 36⁄  for i=5-8 [33]. In the 

same way, the equilibrium distribution function addressing the thermal energy distribution 𝑔𝑖
𝑒𝑞

 

is: 

𝑔𝑖
𝑒𝑞 = 𝜔𝑖𝑇 [1 +

3𝑒𝑖̅.𝑢

𝑐2 +
9(𝑒𝑖̅.𝑢)2

2𝑐4 −
3𝑢2

2𝑐2] (12) 

Other than the proposed forcing term [11,34], an alternative simple forcing term, Fi, is used([13], 

proposed in this book) for the porous media to get the valid mathematical terms of 

hydrodynamics by the following relation: 

𝐹𝑖 = −𝜔𝑖𝜌 [9
𝜈

𝐾
(𝑢𝑒𝑥 + 𝑣𝑒𝑦) +

𝛽

√𝐾
(|𝑢̅|𝑢𝑒𝑥 + |𝑢̅|𝑣𝑒𝑦)] (13) 

Here 𝛽 = 1.75/√150𝜀. The viscosity v and thermal diffusivity 𝛼 can be found from the 

followings: 

𝜈 = (𝜏𝑣 −
1

2
) 𝑐𝑠

2∆𝑡 (14) 

𝛼 = (𝜏𝑐 −
1

2
) 𝑐𝑠

2∆𝑡 (15) 

Finally, Darcy number (Da) and Rayleigh number can be termed as respectively: 

𝐷𝑎 =
𝐾

𝐻2         𝑎𝑛𝑑      𝑅𝑎 =
𝑔0𝛽∆𝑇𝐻3

𝜐𝛼
 (16) 

Here, 𝐻 is the characteristic length. In the LBM applications, it is important to use Da and Ra in 

lattice units, and in that case, H in the Eq. (16) has to be replaced by the quantity of lattices in the 

considered length direction. 

3.2. Boundary condition 

In usual cases, for any practical use, macroscopic physical variable terms 𝜌 and 𝑢̅ are the two 

main factors used to derive boundary condition. As of the LBM, boundary conditions are simply 

substituted to distribution function (DF) 𝑓𝑖. Determining distribution functions at boundary nodes 
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as like the macroscopic boundary conditions is essential in LB-method since this determines both 

the precision and the stability of the calculation. 

3.2.1 Boundary condition for velocity 

 
Fig. 2. Discrete velocity vectors in suppose of the D2Q9 design. 

The present approach has been considered in two dimensions, and the boundary conditions are 

exercised according to D2Q9 model [13,35,36]. Figure 2 shows the discrete velocity vector 

descriptions. 

No slip boundary conditions are employed at the walls: 

Right side (east) wall has the boundary condition of, f3 = f1, f7 = f5 and f8 = f6. 

Left side (west) wall has the boundary condition of, f1 = f3, f5 = f7 and f6 = f8. 

Top side (north) wall has the boundary condition of, f4 = f2, f7 = f5 and f8 = f6. 

South side (bottom) wall has the boundary condition of, f2 = f4, f5 = f7 and f6 = f8. 

3.2.2. Temperatures of the boundary condition 

Hot (Tw), cold (Tc ) as well as adiabatic temperature conditions are set at the boundary walls. 

Right side (east) wall has the cold temperature boundary condition as, g3 = Tc (W1+ W3) -g1, g7 = 

Tc (W7+ W5) -g5, together with g8 = Tc (W8+ W6)-g6.  

At left (west) wall, Tw is used for the 2nd-order Zou-He boundary conditions, which is usually 

used for the heated wall, and these are g1 = Tw (W1+ W3)-g3, g7 = Tw (W5+ W7)-g5 and g8 = Tw 

(W8+ W6)-g6  

For adiabatic/insulated north (top) wall, the boundary condition is gi, n = gi, n-1 
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For adiabatic/insulated south (bottom) wall, the boundary conditions is g,i,0 = gi,1  

4. Code validation 

Code validation for this thermal LB model is done by performing simulations, and matching 

average Nusselt number values with two sets of benchmark solutions. In both the validations, 

simulations of natural convection are restricted inside a 2-dimensional square enclosure of 128 × 

128 lattice size. The west side wall is hot and the east side wall is cold while the upper and lower 

walls are kept thermally isolated. For these validation simulations, the entire cavity contains 

porous materials, and the grid-independent solutions are reported. The generated results are 

compared with that of the benchmark solutions. For all simulations, the Pr value has been set to 

1 and Rayleigh number, Ra, to 103, 104, 105 and 106 are considered. 

Table 1 
Comparison of the average Nusselt number, present outcomes, with that of the single phase fluid while Pr 

= 0.71. 
Ra                                      Nuavg 

         LBM[14]  

 

 

 

   FEM [20]   Present 

 

 10
3
  1.117   1.127 1.095 

10
4
  2.244   2.245 2.245 

10
5
  4.517   4.521 4.481 

10
6
  8.758   8.800 8.776 

 

For the first validation, a comparison is illustrated in Table 1 between the average Nusselt 

numbers of LBM obtained for the range of Ra numbers for ε = 0.9999, Da = 107 and the 

benchmark data of Seta et al. [14] and FEM study by Nithiarasu et al. [20]. It has been said before 

that if ε → 1 and the Da value is high, the equation of the Brinkman-Forchheimer model 

transform into Navier-Stokes equation of free fluid flows. The numerical values in Table 1 show 

a good comparative agreement. 

 The second set of validation data is presented in Table 2. This table compares the average 

Nusselt numbers of the current LB-Method using the Brinkman-Forchheimer mathematical term 

together with the predictions of Seta et al. [14], for the Brinkman-Forchheimer formulation and 

the Brinkman’s model of FEM presented by Nithiarasu et al. [20]. Simulations are performed by 

setting the parametric values to be Da = 10-4, 10-2, Pr = 1 together with ε = 0.4, 0.6, 0.9. The 

comparative data between the LBM and the FEM is agreeable for the whole range of Da and Ra 

numbers. It shows that the LB-Method is able to exhibit acceptable resolution for the Brinkman-

Forchheimer equation. In addition to numerical data validation of Nuavg, Fig.3 further visualises 

a comparison of streamline and isotherm contours against the results from Seta et al. [14]. This 

present LBM work agrees very well with the previous results, generating similar patterns of 

streamline and isotherm contours. 
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Table 2 
Comparative results against the Brinkman-Forchheimer model at 

Pr =1.0. 
 

Da 

 

Ra 

 

ℇ 
Nuavg (=

𝟏

𝑯
∫ 𝑵𝒖(𝒚)𝒅𝒚

𝑯

𝟎
) 

FEM[20]  LBM [14]  Present 

 

 

10-4 

 

105 

0.4 

0.6 

0.9 

1.067 

1.071 

1.072 

1.063 

1.066 

1.067 

1.064 

1.068 

1.068 

 

106 

0.4 

0.6 

0.9 

2.55 

2.725 

2.740 

2.544 

2.610 

2.637 

2.549 

2.615 

2.636 

 

 

 

10-2 

 

103 

0.4 

0.6 

0.9 

1.01 

1.015 

1.023 

1.007 

1.012 

1.017 

1.009 

1.013 

1.018 

 

104 

0.4 

0.6 

0.9 

1.408 

1.530 

1.64 

1.362 

1.493 

1.633 

1.365 

1.495 

1.639 

 

105 

0.4 

0.6 

0.9 

2.983 

3.555 

3.91 

2.992 

3.433 

3.902 

2.999 

3.436 

3.909 
 

()  

(a) (b) (c) (d)  

Fig. 3. Comparisons of Streamlines (a) & (b) [14] and Isotherms (c) & (d) [14] contours for 𝐷𝑎 = 10−2, 

𝑅𝑎 = 104, and 𝜀 = 0.6. 

5. Results and discussions 

For both horizontal and vertical porous layer analysis, several numerical simulations are 

performed using the proposed LBM for different iterative combinations by varying Ra value, Da 

value and porosity (), same procedure is followed for the second part of the code validation. The 

temperature variation between the west side wall and east side wall causes a buoyancy effect, 

which is described by the Boussinesq approximation, G = βg0(T − Tm)𝑗̂. The generated results 

show the fluid’s flow behaviour through streamlines, isotherms, velocities as well as average 

Nusselt number. 

5.1. Influence on streamlines 

Figures 4 (a)-(b) represent the evolution of the streamlines for horizontal porous layer and 

vertical porous layers, respectively, for all the combinations of the given Ra, Da and porosity (𝜀) 

values. These figures are illustrated using contours of streamlines. The fluid rises in the middle 

of the cavity due to buoyancy effect and fluid flows upwards along the heated left wall. The top 

adiabatic wall blocks the flow which then flows along the cold right wall. As a result, re-

circulation of fluid is seen within the cavity. A single globular vortex is noticed at the centre of 

the streamline’s contours due to the gravitational and buoyancy effect that are acting opposite to 

each other inside the cavity. However, in terms of Figure 4 (a), it can be noticed that the 
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streamline contour lines are more densely packed in the top portion of the cavity than the bottom 

portion of the cavity, whereas for vertical porous layer in Figure 4(b), this type of scenario can be 

seen in the rightmost part of the cavity, where the porous materials were considered in the 

opposite half of the square cavity, this is also seen in the schematic diagram (Figure 1). For 

simplicity in the explanation, the region where porous matrix is absent has been considered to be 

"free region", which further can be explained as a zone where fluid flows freely without having 

any influence of porous layer. In the free region the heat transfer is totally convective whereas 

the zone containing porous layer shows both convective and conductive heat transfer. More 

details of the convective and conductive heat transfer phenomenon are discussed later in 

subsection 6.2. Furthermore, it can be concluded from these figures that the presences of a pore 

material made a significant influence on the fluid’s flow characteristics. In the free flow zone the 

fluid seems to be flowing smoothly since the distribution of the streamline contours show the 

fluid has much more presence in the free flowing fluid zone. On the other hand, the zone 

containing porous media has completely different scenario. In the porous layer zone, the fluid 

face obstacle to freely flow in the area. This inability of free flow produces comparatively less 

streamline contours distribution. Hence, it can be concluded that the presence of fluid is 

comparatively much less in the zone containing porous material. In both cases, porous layers 

(horizontal or vertical) resist the fluid flow, and hence the fluid tends to flow more towards the 

free region of the cavity. 

5.2. Changes in isotherms 

In the observation of fluid’s flow characteristics and heat transfer characteristics, isotherm shows 

whether the pattern of heat transfer has the same characteristics as the conductive heat transfer 

and convective heat transfer. In the present investigation, changes in isotherm contours have 

been analysed for considered porous layers, horizontal porous layer and vertical porous layer. 

Isotherm contours draw a clear picture of the convective heat transfer regions, conductive heat 

transfer regions, and, mixed convective-conductive heat transfer regions. 

     

     

     
Fig. 4 (a). Streamlines of horizontal porous layer at (i)  =0.4 (ii)  =0.6 (iii)  =0.9 while Ra = 103 , Da = 

10-2, (iv)  =0.4 (v)  =0.6 (vi)  =0.9 while Ra = 104 , Da = 10-2, (vii)  =0.4 (viii)  =0.6 (ix)  =0.9 while 

Ra = 105 , Da = 10-2, (x)  =0.4 (xi) 𝜀 = 0.6 (xii)  =0.9 while Ra = 105 , Da = 10-4 and (xiii)  =0.4 (xiv)  

=0.6 (xv)  =0.9 while Ra = 106 , Da = 10-4. 
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Fig. 4 (b). Streamlines of vertical porous layer at (i)  =0.4 (ii)  =0.6 (iii)  =0.9 while Ra = 103 , Da = 

10-2, (iv)  =0.4 (v)  =0.6 (vi)  =0.9 while Ra = 104 , Da = 10-2, (vii)  =0.4 (viii)  =0.6 (ix)  =0.9 while 

Ra = 105 , Da = 10-2, (x)  =0.4 (xi)  =0.6 (xii)  =0.9 while Ra = 105 , Da = 10-4 and (xiii)  =0.4 (xiv)  

=0.6 (xv)  =0.9 while Ra = 106 , Da = 10-4. 

 

     

     

     
Fig. 5 (a). Isotherms of horizontal porous layer at (i)  =0.4 (ii)  =0.6 (iii)  =0.9 while Ra = 103 , Da = 

10-2, (iv)  =0.4 (v)  =0.6 (vi)  =0.9 while Ra = 104 , Da = 10-2, (vii)  =0.4 (viii)  =0.6 (ix)  =0.9 while 

Ra = 105 , Da = 10-2, (x)  =0.4 (xi)  =0.6 (xii)  =0.9 while Ra = 105 , Da = 10-4 and (xiii)  =0.4 (xiv)  

=0.6 (xv)  =0.9 while Ra = 106 , Da = 10-4. 
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Fig. 5 (b). Isotherms of vertical porous layer at (i)  =0.4 (ii)  =0.6 (iii)  =0.9 while Ra = 103 , Da = 10-2, 

(iv)  =0.4 (v) 𝜀 = 0.6 (vi)  =0.9 while Ra = 104 , Da = 10-2, (vii)  =0.4 (viii)  =0.6 (ix)  =0.9 while Ra 

= 105 , Da = 10-2, (x)  =0.4 (xi) 𝜀 = 0.6 (xii)  =0.9 while Ra = 105 , Da = 10-4 and (xiii)  =0.4 (xiv)  

=0.6 (xv)  =0.9 while Ra = 106 , Da = 10-4. 

In Figures 5 (a) and (b), it is observed that vertical lines are mostly present in the porous regions 

since heat transfer in this region mostly occurs because of conduction due to the close contacts 

among the particles. On the other hand, heat transfer in free region takes place through 

convection as represented by curves in the isotherm plots. Few of the isotherms in Figures 5 (x-

xv), possess both vertical and curvy lines in the same plotting frame since the conduction and the 

convection are occurring simultaneously. This phenomenon is mostly seen during high intensity 

fluid flow. In addition, it can be concluded from these figures that the presences of a pore 

material made a significant influence on the heat transfer rate characteristics. In the porous 

material zone the rate of heat seems to be more since the distribution of the isotherm contours 

show the contour lines have much more presence in the porous material zone. Conversely, the 

zone containing no porous media has completely different scenario. In the free fluid zone, the 

heat transfer rate is comparatively slower. This slow rate of heat transfer produces comparatively 

less isotherm contours distribution. Hence, it can be concluded that the rate of heat transfer is 

comparatively much higher in the zone containing porous material. 

5.3. Effect of Ra and Da numbers 

Ra value defines the intensification of a fluid flow. For small Ra number (Ra = 103), viscous 

force shows dominancy over buoyancy force and so the streamlines flow along the geometry of 

the cavity. This is evident from the streamlines of Figures 4 (i-iii). The temperature profiles, 

plotted in Figures 5 (i-iii), also show linearity along the x-axis since here heat transfer is taking 

place pre-dominantly via conduction along the walls of the enclosure and so the isotherms are 

almost vertical. It can be inferred from this situation that heat transfer mainly takes place due to 

conduction along the walls of the enclosed cavity. Increasing the Ra value to Ra = 104 intensifies 

the fluid flow more for which the contour lines of Figures 4 (iv-vi) tend to flow towards and 

gather around in the non-porous right half of the cavity where it finds more free region to flow. 
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At this situation, the isotherms in Figures 5 (iv-vi) also seem to bend a little as now heat transfer 

is occurring through convection. Here, vertical lines are only seen near the hot and cold walls 

due to thin boundary layers. Further intensifying the fluid flow by increasing Rayleigh number to 

Ra = 105 and 106 distorts the central globular vortex into an elliptical shape (horizontal) or an 

oval shape (vertical), which was seen earlier in Figures 4 (vii-ix). The isotherms in Figures 5 

(vii-ix) bend into horizontal shape as convection is occurring almost throughout the whole cavity. 

As the fluid continues to flow, most of the streamlines along with the central vortex get squeezed 

towards the free region of the cavity where the fluid can flow more freely. Only few streamlines 

can be observed in the porous layer as the fluid faces more resistance in this region, and thus 

cannot flow freely. This behaviour is illustrated in Figures 4 (x-xii). Meanwhile, in Figures 5 (x-

xv), both vertical lines at porous region and horizontal lines at free region of the cavity are 

visible in the plots since heat is transferred via both conduction and convection mechanism 

simultaneously. However, from Figures 4 (xiii-xv), a sudden increase of fluid flow is observed 

due to increase of Rayleigh number from Ra = 105 to 106 keeping 𝐷𝑎 = 104 to be constant.  

5.4. Velocity profiles 

Figures 6 (a)-(b) show the changes in the u-velocity profiles for both horizontal and vertical 

porous layers, while the trend of v-velocities are shown in Fig.7 (a)-(b) regarding the respective 

cases. These velocities signify the distributions at middle-height of the cavities at dissimilar Ra 

and Da values. As Ra value increases, the rate of the fluid flow will elevate rapidly in free 

region. In addition, as the rate of the flow increases, the boundary layer becomes narrower. 

However, as soon as the flow reaches the porous layers (horizontal or vertical), the flow faces 

resistance, and hence the velocity reduces significantly, which can be seen at Figures 6 and 

Figures 7. At the end, the flow velocity will stop once the fluid reaches the porous region. 

However, with an increase in Ra number, the fluid will quickly approach towards the porous 

media. Hence, the flow velocity will become zero sooner than before. 

5.5. Impact of porosity on Nu and Nuavg 

The Nuavg values presented in this paper are calculated using the following expression: 

𝑁𝑢𝑎𝑣𝑔 =
1

𝐻
∫ 𝑁𝑢(𝑦). 𝑑𝑦

𝐻

0
 (17) 

where, H is characteristic elevation of the cavity and the 𝑁𝑢(𝑦) = −
𝜕𝑇

𝜕𝑥
 at x = 0. 

In computational study of fluid dynamics through porous media, Da number defines the effective 

permeability of the pore material relative to its cross-sectional area. It means when Da number 

decreases, the permeability of the pore material also decreases and vice versa [37]. Figures 8(a)-

(b) show the changes in Nu numbers for both porous layers. According to Figures 8, when 

Da=10-2, the Nu numbers show similar trends for both horizontal and vertical porous layers, as 

the growth of the heat increases at the commencement. But later, the flow approaches towards 

the cold wall of the cavity. However, at Da=10-4, the Nu numbers have very slow growth 

(horizontal layer), which is because the heat transfer generally depends on conduction. If Da 
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number increases, Nu increases rapidly due to the co-existence of convective (natural) and 

conductive heat transfer in the porous media. 

 
Fig. 6 (a). Effect of porosity parameters on normalized u velocity of horizontal porous layer at (i) Ra=103, 

Da=10-2, (ii) Ra=104, Da=10-2. (iii) Ra=105, Da=10-2, (iv) Ra=105, Da=10-4 and (v) Ra=106, Da=10-4. 

 
Fig. 6 (b). Effect of porosity parameters on normalized u velocity of vertical porous layer at (i) Ra=103, =

10−2 , (ii) Ra=104, Da=10-2. (iii) Ra=105, Da=10-2, (iv) Ra=105, Da=10-4 and (v) Ra=106, Da=10-4. 

 
Fig. 7 (a). Effect of porosity parameters on normalized v velocity of horizontal porous layer at (i) Ra=103, 

Da=10-2, (ii) Ra=104, Da=10-2. (iii) Ra=105, Da=10-2, (iv) Ra=105, Da=10-4 and (v) Ra=106, Da=10-4. 

 
Fig. 7 (b). Effect of porosity parameters on normalized v velocity of vertical porous layer at (i) Ra=103, 

𝐷𝑎 = 10−2, (ii) Ra=104, Da=10-2. (iii) Ra=105, Da=10-2, (iv) Ra=105, Da=10-4 and (v) Ra=106, Da=10-4. 
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Fig. 8 (a). Influence of porosity parameters on Nu, of horizontal porous layer at (i) Ra=103, Da=10-2, (ii) 

Ra=104, Da=10-2. (iii) Ra=105, Da=10-2, (iv) Ra=105, Da=10-4 and (v) Ra=106, Da=10-4. 

 
Fig. 8(b). Influence of porosity parameters on Nu, of vertical porous layer at (i) Ra=103, Da=10-2, (ii) 

Ra=104, Da=10-2. (iii) Ra=105, Da=10-2, (iv) Ra=105, Da=10-4 and (v) Ra=106, Da=10-4. 

Influence of ε value on the convective heat transfer for fixed Ra and Da values for cases of 

horizontal and vertical layer of pore materials is demonstrated in Fig. 8 (a)-(b) and Table 3. The 

generated results illustrate that the rate of heat transfer gets slower as porosity increases. For 

given Ra and Da values, a higher porosity means lower contact surface area between the 

particles and less resistance for fluid flow, thereby minimising the heat transfer mechanism. In 

other words, as porosity decreases, the Nu number increases for both horizontal and vertical 

porous layers. Considering the numerical data in Table 3, it is observed that at Da=10-4 and 

Ra=105, if the porosity reduces from 0.9 to 0.6 (difference of only 0.3), the average Nu number 

increases by 0.03 unit (horizontal) and 0.05 unit (vertical). In case the porosity reduction is 

almost doubled (i.e. by 0.5 unit) from 0.9 to 0.4, average Nu value rises by 0.06 and 0.13 units 

for horizontal and vertical porous layers, respectively. It can be deduced that heat transfer gets 

doubled as reduction of porosity is doubled, although the variation of porosity affects the average 

Nu number slightly since Da number is low. This pattern is also evident if Ra number is 

increased to 106 keeping Da number as 10-4. Therefore, it can be anticipated that Nu numbers 

will gradually reach the maximum value as the porosity continues to decrease significantly 

making the particles more compacted. However, the above mentioned criterion does not hold in 

case of low Ra and Da numbers. At Da=10-2 and Ra=103 and 104, decrease in porosity has 

almost no impact on the rate of heat transfer, that is, the 𝑁𝑢𝑎𝑣𝑔 values are not affected by 

porosity (ℇ), Ra or Da numbers when Ra and Da numbers are low. Table 3 also depicts the fact 

that at Ra=105 and Da=10-2, change in porosity has great impact on natural convective heat 

transfer [24]. Here, as porosity is increased from 0.4 to 0.9, the 𝑁𝑢𝑎𝑣𝑔 value also gets higher 

significantly (by 0.45 units for horizontal and 0.84 units for vertical) due to increase in 

permeability. Furthermore, it is observed from the tabulated results that, for same amount of 

porosity variation, changes in average Nu number for vertical porous layer is more than that of 
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horizontal layer. Therefore, it can be inferred that insulating an enclosed area vertically will be a 

better option than doing it horizontally. 

The ability of the current LB-method to exhibit the solutions of Brinkman-Forchheimer 

formulation correctly has already been proven and validated using Table 1 and Table 2. After 

simulating for horizontal and vertical porous layer, the 𝑁𝑢𝑎𝑣𝑔 values are tabulated in Table 3. 

The experimental data of the LBM solutions can predict the non-Darcy behaviour accurately. 

This can be comprehended from the trend of the data in all the tables, as well as, in the 

simulation plots: 

If the Da and Ra numbers are fixed, the average Nu number increases with porosity almost 

linearly. 

If the Da and porosity (ℇ) are fixed, then higher Ra value results in the average Nu value to get 

high. 

If the Ra number and ℇ are fixed, the 𝑁𝑢𝑎𝑣𝑔 increases with a higher value of Da because of 

increasing permeability of the pore material that speeds up the flow velocity of the fluid.  

If the Da and Ra numbers are low, the average Nu numbers are not affected by porosity (ℇ), Ra 

or Da numbers. 

The Da and Ra numbers have considerable influence on fluid flow and rate of heat transfer, of 

which the latter affect more distinctly than the former. Moreover, at high Da number, the natural 

convective heat transfer in enclosed cavity enhance significantly as the porosity increases. 

Table 3 

Numerical results of 𝑁𝑢𝑎𝑣𝑔 for both horizontal and vertical porous layers. 

 

Da 

 

Ra 

𝑵𝒖𝒂𝒗𝒈 

ℇ = 0.4 ℇ = 0.6 ℇ = 0.9 

Horizontal Vertical Horizontal Vertical Horizontal Vertical 

10-4 105 

106 

2.505038 

5.401911 

1.568069 

4.141382 

2.477976 

5.334390 

1.490630 

3.843745 

2.453791 

5.282199 

1.447912 

3.486232 

 

10-2 

103 

104 

105 

1.015100 

1.684465 

3.722578 

1.006989 

1.511022 

3.300134 

1.017237 

1.729577 

3.992295 

1.008230 

1.582478 

3.910919 

1.022974 

1.776947 

4.168695 

1.016320 

1.713148 

4.136219 

 

6. Conclusion 

LBM had been used to numerically study fluid flow and heat transfer considering a pore material 

at REV scale inside a square enclosure. Brinkman-Forchheimer equation was incorporated in the 

present non-Darcy system to deliberate both inertial and viscous terms. The adaptability of LBM 

with Brinkman-Forchheimer equation was validated with benchmark results and was found to be 

in good agreement. Compared to the conventional FEM, LBM was found to be numerically more 

accurate with less time-scale to complete the simulation task. Simulation results obtained by the 

present LB model could provide details of the nature of the flow in different geometrical 

alignments. The results also conclude that not only porosity of the medium is responsible to 

influence the fluid flow and the rate of heat transfer in the theory of fluid dynamics, but also the 
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dimensionless parameters like Ra number and Da number play vital role. When Ra and Da 

numbers were kept constant, the rate of heat transfer, defined by 𝑁𝑢𝑎𝑣𝑔, increased with porosity. 

Rate of heat transfer also showed increment for fixed porosity values and Da value. Enhancing 

the permeability of the porous medium by increasing Da number also helped to improve the rate 

of heat transfer. However, no impact of the dimensionless parameters and porosity could be seen 

on the 𝑁𝑢𝑎𝑣𝑔 for lower Da and Ra values. These properties are the behaviours of the non-

Darcian flow which were successfully obtained numerically through the present LBM solutions. 

Nomenclature 

English symbols 

c  lattice spacing  

Da  Darcy number 

ei  discrete velocity 

𝐹̅  total body force 

fi  velocity distribution function 

𝐺̅  buoyancy force 

gi  thermal distribution function  

g0  acceleration due to gravity  

H  characteristic length 

𝑗̂  unit vector in y-direction 

Nu  local Nusselt number 

Nuavg  average Nusselt number 

Pr  Prandtl number  

p  pressure 

K  permeability  

Ra  Rayleigh number 

T  fluid temperature 

𝑢̅  fluid velocity 

v  normalized velocity  

W  block separation distance 

x, y  cartesian co-ordinates 

 

Greek symbols 

  thermal diffusivity  

  volumetric expansion co-efficient 

  summation operator  

  delta operator 

  divergence operator 

𝜕  differential operator 

  porosity 

  fluid density 

  single relaxation time 

i  weighted factor  

  kinematic viscosity 
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Subscripts 

c  cold 

e  effective 

k  kinematic 

m  mean 

s  speed 

t  time 

w  hot 

 

Superscripts  

eq  equilibrium 
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